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Abstract— By exploiting connections between stationary ac-
tion and optimal control, fundamental solution groups cor-
responding to a class of wave equations are constructed via
dynamic programming.
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I. INTRODUCTION

The action principle [1], [2], [3], [4] is a variational
principle underpinning modern physics that may be applied
to a predefined notion of action to yield the equations of
motion of a physical system and its underlying conservation
laws. An important corollary of the action principle is that
any trajectory of an energy conserving system renders the
corresponding action functional stationary in the calculus
of variation sense. With regard to a wave equation that
is lossless, the action principle can thus be interpreted as
providing a characterization of all of its solutions. This
interpretation motivates the development summarized in this
extended abstract, in which the action principle is applied
via an optimal control representation to construct the corre-
sponding wave equation fundamental solution group.

In order to apply the action principle, compatible notions
of kinetic and potential energy are defined with respect to
generalized notions of momentum (or velocity) and position
that correspond respectively to the input and mild solution
of an abstract Cauchy problem [5], [6]. This allows the
integrated action to be rigorously defined as a time horizon
parameterized functional of the momentum (velocity) input.
Unlike the finite dimensional case, this action functional is
neither convex nor concave for any time horizon, thereby
preventing an immediate generalization of the optimal con-
trol approach of [4] to its analysis. As a remedy, a corre-
sponding approximate class of wave equations is considered
as an interim step, in which the unbounded linear operator
involved is replaced by its (bounded) Yosida approximation.
This yields a corresponding action functional that is strictly
concave for sufficiently short (but positive) time horizons.
The integrated action is subsequently analysed using tools
from optimal control theory, semigroup theory, and idem-
potent analysis, see for example [5], [6], [7], [8], [9]. In
particular, an idempotent fundamental solution semigroup
applicable on sufficiently short horizons is used to represent
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the value function of the attendant optimal control problem
as an idempotent convolution of a bivariate kernel with a
terminal cost. As the characteristics associated with this
optimal control problem must correspond to solutions of the
approximate wave equation by stationary action, the idem-
potent fundamental solution semigroup is subsequently used
to construct a short horizon prototype for the fundamental
solution group for the aforementioned approximate wave
equation. These short horizon prototypes are pieced together
into long horizon prototypes using the stat operation of
[10], with the latter converging uniformly to the fundamental
solution group of the exact wave equation, in the vanishing
limit of the Yosida approximation.

In terms of organization, the class of wave equations of
interest is introduced in Section II, with the corresponding
action principle formalized via an optimal control problem
in Section III. Group construction proceeds in Section IV,
and is followed by a brief concluding remark in Section V.

Throughout, N and Z denote the natural numbers and
integers respectively, while R, R≥0, R .

= R∪{−∞}∪{+∞}
denote the real numbers, non-negative reals, and extended
reals. Rn denotes Euclidean space of dimension n ∈ N.

II. CLASS OF WAVE EQUATIONS

The wave equations of interest take the abstract form

ẍ = −Λx (1)

in which Λ is an arbitrary linear, unbounded, positive, self-
adjoint operator densely defined in an L2-space X , and pos-
sessing a compact inverse Λ−1 ∈ L(X ). Spatial boundary
conditions for (1) are specified via the domain of Λ, which is
denoted by X2

.
= dom(Λ), with X2 = X . It may be noted

that this class of wave equations includes those evolving in
compact subsets of Euclidean space. For example, selecting
Λ to be the additive inverse of the Laplacian operator defined
on a Sobolev space of functions compactly supported in R2

yields such a wave equation [11].
In general, as Λ has a unique, positive, self-adjoint square

root Λ
1
2 , a pair of useful Hilbert spaces is defined by

X1
.
= dom(Λ

1
2 ), 〈x, ξ〉1

.
= 〈Λ 1

2x,Λ
1
2 ξ〉,

Y1
.
= X1 ×X , 〈(x, p), (ξ, π)〉Y

.
= 〈x, ξ〉1 + 〈p, π〉,

for all x, ξ ∈X1, p, π ∈X . A solution of (1) is in general
interpreted as a mild solution of a corresponding abstract
Cauchy problem [5], [6], defined with respect to Y1 by(

ẋs
ṗs

)
= A

(
xs
ps

)
, s ∈ R,

(
x0

p0

)
∈ Y1. (2)
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Here, A is the unbounded and densely defined operator

A .
=

(
0 I
−Λ 0

)
, dom(A)

.
= Y2

.
= X2 ×X1, (3)

that is boundedly invertible, and generates a strongly contin-
uous group {Ut}t∈R ⊂ L(Y1), see [5, Theorem 4.3, p.14,
p.22]. Consequently, a unique continuously differentiable
solution of (2) exists on R for every (x0, p0) ∈ Y2, and
this defines a classical solution of (1), see [5, Theorem 1.3,
p.102]. This (and every) solution is given uniquely by(

xs
ps

)
= Us

(
x0

p0

)
, s ∈ R. (4)

As indicated, the objective is to construct elements of the
fundamental solution group {Ut}t∈R ⊂ L(Y1) for (1).
This construction centres on an action principle and its
formulation as an optimal control problem.

III. ACTION PRINCIPLE VIA OPTIMAL CONTROL

Define notions of potential and kinetic energy V : X1 →
R and T : X → R respectively by

V (x)
.
= 1

2 ‖x‖
2
1, T (w)

.
= 1

2 ‖J w‖
2
1 = 1

2 ‖w‖
2, (5)

for all x,w ∈ X1, in which J .
= Λ−

1
2 ∈ L(X1). Given a

desired time horizon t ∈ R≥0, define the action functional
Jt : X1 ×W [0, t]→ R with respect to V and T of (5) and
an artificial “terminal action” ψv : X1 → R by

Jt(x,w)
.
=

∫ t

0

V (ξs)− T (ws) ds+ ψv(ξt), (6)

ξs
.
= [χ(x, u)]s = x+

∫ s

0

wσ dσ, (7)

for all x ∈ X1, w ∈ W [0, t], s ∈ [0, t], in which W [0, t]
.
=

L2([0, t]; X1) and ψv(x)
.
= 〈x, v〉1 for all x ∈ X1, with

v ∈ X1 fixed. By inspection, initial and terminal data for
the dynamics (7) are encoded via x and ψv respectively. It
may be observed that Jt(x, ·), x ∈ X1, is neither convex
nor concave for any t ∈ R>0, due to the different norms
appearing in (5). However, given arbitrary µ ∈ R>0, a
concave approximation Jµt (x, ·) exists for sufficiently short
terminal times t ∈ [0, t̄µ], with t̄µ

.
= µ
√

2, see [12]. This
approximation is obtained by replacing Λ in the kinetic
energy (5) with its Yosida approximation Λ Iµ ∈ L(X ) via
the Hille-Yosida Theorem [5], where Iµ is defined via the
resolvent of −Λ by Iµ

.
= (I + µ2 Λ)−1. This yields

Jµt (x,w)
.
=

∫ t

0

V (ξs)− Tµ(ws) ds+ ψv(ξt), (8)

with Tµ : X1 → R defined by Tµ(w)
.
= 1

2‖(Λ Iµ)−
1
2w‖21 =

1
2‖w‖

2 + µ2

2 ‖w‖
2
1 for all w ∈X1, and (Λ Iµ)−

1
2 exists and

is bounded by definition of Iµ and boundedness of Λ−1.
Theorem 3.1: [12] Given µ ∈ R>0, the value function

Wµ
t : X1 → R corresponding to (8) is well-defined by

Wµ
t (x)

.
= sup
w∈W [0,t]

Jt(x,w) (9)

for all t ∈ [0, t̄µ], x ∈X1.

IV. GROUP CONSTRUCTION

As suggested by Pontryagin’s maximum principle, it may
be shown [12], [9] that the value function (9) naturally
defines (optimal) trajectories and inputs satisfying (7) that
render the action functional stationary (in this case, max-
imal). The objective here is to use these trajectories and
inputs, encoded via an idempotent representation of (9), to
construct corresponding solutions of the wave equation (1),
in the limit as µ→ 0.

A. Short horizons

The idempotent representation of (9) of interest here
takes the form of an idempotent convolution of a bivariate
quadratic kernel, corresponding to an element of an idem-
potent fundamental solution semigroup, with the terminal
action ψv , see [13], [9], [14]. In particular,

Wµ
t (x) = sup

y∈X1

{Gµt (x, y) + ψv(y)} (10)

for all x ∈ X1, µ ∈ R>0, t ∈ (0, t̄µ]. Here, the kernel
Gµt : X1×X1 → R is defined by Gµt (x, y)

.
= 1

2 〈x,P
µ
t x〉1 +

〈x,Qµt y〉1 + 1
2 〈y,P

µ
t y〉1, in which Pµt ,Q

µ
t ∈ L(X1) denote

well-defined self-adjoint and invertible solutions of a pair
of operator differential Riccati equations, see for example
[9]. As Gµt (x, ·) and ψv are both Fréchet differentiable, the
supremum in (10) is achieved at y = y∗x ∈X1 satisfying 0 =
Qµt x+Pµt y+v, or y∗x = −(Pµt )−1 (Qµt x+ v), and the value
function (9), (10) satisfies Wµ

t (x) = Gµt (x, y∗x) + ψv(y
∗
x).

Meanwhile, the associated optimal trajectory satisfies ξ∗s =
[χ(x,w∗)]s, w∗s = kµt (s, ξ∗s ), for all s ∈ [0, t], in which
kµt (s, y)

.
= Λ Iµ∇Wµ

t−s(y), s ∈ [0, t], y ∈ X1. By inspec-
tion, the initial and terminal states and inputs (respectively,
generalized positions and velocities or momenta) thus satisfy

ξ∗0 = x, ξ∗t = y∗x, (11)
w∗0 = Λ Iµ∇Wµ

t (x), w∗t = Λ Iµ∇ψv(y∗x) = Λ Iµv.

Note further, by the chain rule, that

∇xWµ
t (x) = ∇xGµt (x, y)|y=y∗x

+Dxy
∗
x∇yG

µ
t (x, y)|y=y∗x

= (Pµt −Q
µ
t (Pµt )−1Qµt )x− (Pµt )−1Qµt v. (12)

Applying (12) in (11), followed by a change of variable w∗s
.
=

I
1
2
µ π∗s , s ∈ [0, t], and some algebraic manipulations, yields(
ξ∗t
π∗t

)
= Ûµt

(
ξ∗0
π∗0

)
=

(
[Ûµt ]11 [Ûµt ]12

[Ûµt ]21 [Ûµt ]22

)(
ξ∗0
π∗0

)
,

(13)

for all t ∈ (0, t̄µ], with Ûµt ∈ L(X1 ×X ) defined by

[Ûµt ]11
.
= −(Qµt )−1 Pµt , [Ûµt ]12

.
= (Qµt )−1 E−1

µ ,

[Ûµt ]21
.
= EµQµt (I − [(Qµt )−1 Pµt ]2),

[Ûµt ]22
.
= −Eµ Pµt (Qµt )−1 E−1

µ , (14)

and Eµ
.
= Λ I

1
2
µ ∈ L(X1; X ), E−1

µ ∈ L(X ; X1). It may
be shown [12] that {Ûµt }t∈(0,t̄µ] is a subset of the uniformly
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continuous group {Uµt }t∈R generated byAµ ∈ L(Y1), where

Aµ .
=

(
0 I

1
2
µ

−Λ I
1
2
µ 0

)
, dom(Aµ)

.
= Y1. (15)

Analogously to (2), (3), (4), observe that {Uµt }t∈R defines
solutions of the corresponding abstract Cauchy problem(

ξ̇s
π̇s

)
= Aµ

(
ξs
πs

)
, s ∈ R,

(
ξ0
π0

)
∈ Y1, (16)

and that these are always classical solutions. Consequently,
by inspection of (15), (16), the approximate action principle
encapsulated via (8), (9) yields solutions of

ξ̈ = −Λ Iµ x, (17)

which is also a wave equation. As −Λ Iµ ∈ L(X1) is the
Yosida approximation of −Λ, note that −Λ Iµ converges
strongly to −Λ as µ → 0+ on dom(−Λ) = X2, see [5,
Lemma 3.3, p.10]. In this formal sense, the wave equation
(17) can be considered as converging to (1) in the limit. Con-
sequently, it is referred to as the approximate wave equation
corresponding to (1). A statement concerning convergence
of solutions of (17) to those of (1) requires an application of
the Trotter-Kato theorem, see [5, Theorem 4.4, p.87], [9].

B. Longer horizons

The prototype fundamental solution group {Ûµt }t∈(0,t̄µ]

defined by (14), and constructed via the action principle
encapsulated by (8), (9), is a subset only of the corresponding
fundamental solution group {Uµt }t∈R for the approximate
wave equation (17). Furthermore, the time horizon t̄µ = µ

√
2

on which it is defined converges to zero as µ → 0+.
Consequently, in order to construct the fundamental solution
group for (17), and hence (1), an extension to longer horizons
is required. As the short horizon restriction evident is due
to a loss of concavity of the action functional (8) on longer
horizons, it is crucial that concavity be relaxed to stationarity
at some intermediate times. This can be achieved via suitable
use of the stat operation [10] in defining an analog of the
value function (9) on longer horizons, via a generalization of
the convolution representation (10). Indeed, motivated by the
associated quadratic form for the kernel Gµt , it is possible to
define a long horizon value function [12] by

W̃µ
t (x)

.
= stat
y∈X1

{
G̃µt (x, y) + ψv(y)

}
(18)

for all t ∈ Ωµ, x ∈ X1, in which Ωµ is an unbounded,
uncountable, and dense subset of R≥0 selected so as to avoid
finite escape times of the associated Riccati equations for
all µ ∈ R≥0, see [12], and G̃µ is defined via an iterative
concatenation of short horizons. In particular, given nt ∈ N
sufficiently large such that τ .

= t/nt ∈ (0, t̄µ],

G̃kτ (x, y)
.
= stat
η∈X1

{
G̃µ(k−1)τ (x, η) +Gµτ (η, y)

}
, (19)

for all k ∈ N≤nt , in which Gµτ is the quadratic form
as per (10). By choice of Ωµ, (19) is also a quadratic
form, and indeed has exactly the same analytical expression

as the short horizon case. Following analogous steps as
per (10), (11) yields that the subset {Ûµt }t∈(0,t̄µ] of the
approximate fundamental solution group defined by (14) may
be extended to {Ũµt }t∈Ωµ , while satisfying Ũµt = Ûµt for
all t ∈ (0, t̄µ]. This extended subset yields all solutions of
the approximate wave equation (17), with those solutions
being defined almost everywhere via Ωµ, and taking the same
form as (13). An application of the Trotter-Kato theorem [5,
Theorem 4.4, p.87] subsequently yields that these solutions
converge uniformly on bounded intervals to those of the wave
equation (1) of interest.

Theorem 4.1: There exists an unbounded, uncountable,
and dense Ω ⊂ R, and a sequence {µj}j∈N ∈ R>0 satisfying
limj→∞ µj = 0, such that

0 = lim
j→∞

∥∥∥∥ Ũµjt (
x0

p0

)
− Uµjt

(
x0

p0

)∥∥∥∥
Y

for all (x0, p0) ∈ Y1, uniformly in t on bounded subsets of
Ω.

V. CONCLUSIONS

A fundamental solution group is constructed for a general
class of lossless wave equations via an action principle and
its encapsulation within an optimal control problem.
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