
Solvability of Dirichlet problem with Nonlinear Integro-differential
Operator

Erhan Bayraktar1 and Qingshuo Song2

Abstract— This paper studies the solvability of a class
of Dirichlet problem associated with a non-linear integro-
differential operator. The main ingredient is the use of Perron’s
method together with the probabilistic construction of contin-
uous supersolution via the identification of the continuity set
of the exit time operators in the path space under Skorohod
topology.

I. INTRODUCTION AND PROBLEM SETUP

A. Problem setup

Consider an equation of the form

F (u, x) + u(x)− `(x) = 0, x ∈ O (1)

with the boundary value

u(x) = g(x), x ∈ Oc. (2)

In the above, the operator

F (u, x) = − inf
a∈[a,a]

H(u, x, a)− I(u, x)

is defined via operators given by
I(u, x) =

∫
Rd(u(x+y)−u(x)−Du(x)·yIB1

(y))ν(dy)
;
H(u, x, a) = 1

2 tr(A(a)D2u(x)) + b(a) · Du(x) with
A(a) = σ′(a)σ(a).

In the above, a ≤ a are given two real numbers, ν(·) is
a Levy measure on Rd, Br(x) is a ball of radius r with
center x, and Br = Br(0) for simplicity. Recall that, we say
ν is a Levy measure, if

∫
Rd(1 ∧ |y|2)ν(dy) < ∞ holds.

To simplify our presentation, we will use the following
additional assumptions throughout the paper.

Assumption 1: 1) O is a connected open bounded set
in Rd.

2) σ, b ∈ C0,1(R); `, g ∈ C0(Rd).
3) ν(dy) = ν̂(y)dy is a Levy measure satisfying ν̂ ∈

C0(Rd \ {0}).
For some α ∈ (0, 2), if ν is given by

ν(dy) =
dy

|y|d+α
,

then ν satisfies Assumption 1, and the integral operator is
denoted by I(u, x) = −(−∆)α/2u(x) as convention. For
convenience, we write −(−∆)0u = 0.
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B. Literature review and an example

A function u is said to be a solution of Dirichlet problem
(1)-(2), if u ∈ C(Ō) satisfies (1) in the viscosity sense and
u = g on ∂O. It is worth to note that, as far as Dirichlet
problem (1)-(2) concerned, one can generalize the boundary
condition (2) by

max{F (u, x) + u(x)− `(x), u− g} ≥ 0
≥ min{F (u, x) + u(x)− `(x), u− g} on Oc (3)

without loss of uniqueness in the viscosity sense.
In contrast to the (classical) Dirichlet problem (1)-(2),

Dirichlet problem (1)-(3) is referred to a generalized
Dirichlet problem. For the generalized Dirichlet problem
without nonlocal operator, there were many excellent
discussions on the solvability with the comparison
principle and Perron’s method, see for instance,
[Barles and Perthame, 1988], [Barles and Perthame, 1990],
[Barles and Burdeau, 1995], and Section 7 of
[Crandall et al., 1992]. Recently, the solvability result
has been extended to nonlinear equations associated to
Integro-differential operators, see [Barles and Imbert, 2008],
[Barles et al., 2008], [Alvarez and Tourin, 1996],
[Topp, 2014], and the references therein.

Compared to the generalized Dirichlet problem, there are
relatively less discussions available on the classical Dirichlet
problem associated with the Integral operators in the afore-
mentioned references. For the illustration purpose, we will
use the following example, which will be used throughout
the paper.

Example 1: Justify the the uniqueness and existence of
the viscosity solution for Dirichlet problem given by, with
α ∈ [0, 2]

|∂x1
u|+(−∆)α/2u+u−1 = 0, ∀x ∈ O = (−1, 1)×(−1, 1)

(4)
with

u(x) = 0, ∀x ∈ Oc.
A partial answer of Example 1 from the existing literature

is given as this below:
• If α = 0, there is no solution. In fact, one can directly

check that u(x) = 1−e−1+|x1| is the unique solution of
the generalized Dirichlet problem, but not a solution of
classical Dirichlet problem due to its loss of boundary
at {(x1, x2) : |x2| = 1, |x1| < 1}.

• If α ∈ [1, 2], there is a unique solution by
[Barles et al., 2008].

• If α ∈ (0, 1), although there is unique solution of
generalized Dirichlet problem by [Topp, 2014], it is
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remained unanswered whether there is a solution of
classical Dirichlet problem.

C. Work outline

This work focuses on the sufficient condition of the
existence and uniqueness of the viscosity solution for Dirich-
let problem of (1)-(2). Formally, the solution of (1)-(2),
if it exists, is expected to be equal to the value func-
tion of a stochastic exit control problem, see for instance
[Fleming and Soner, 2006]. However, a rigorous proof on
the equivalence between the solution of (1)-(2) and the value
function associated to exit control problem is not an easy task
due to the lack of dynamic programming principle, see more
discussions in [Bayraktar and Sirbu, 2013] for Hamilton-
Jacobi-Bellman equation without non-local operator.

Alternatively, our approach here is to construct the sub-
solution and supersolution, and then the unique solvability
follows by the comparison principle and Perron’s method.
The comparison principle and Perron’s method are already
available in [Barles and Imbert, 2008]. In this connection,
we establishes the main result by constructing subsolution
and supersolution using a particular controlled process and
boundary data g. Finally, we emphasize that the proof relies
on the continuity of the value function of the exit problem.
In general, due to the non-local property, continuity of the
value function up to a stopping time is much more delicate
than the counterpart of the purely differential form. Indeed,
by investigating the continuity of the exit mappings on
path space under Skorohod metric, we conclude that the
regularity of the boundary guarantees the continuity of the
value function. This part is crucial for the main result, and
as far as the solvability of Dirichlet problem concerned, the
methodology is original to the best of our knowledge.

The contribution of this work is therefore the sufficient
condition on the existence and uniqueness of the solution
for (1)-(2). In particular, the sufficient condition requires the
regularity of the boundary with respect to some controlled
process. When Dirichlet problem is given by purely differ-
ential elliptic operators with C2-smooth boundary, our result
is consistent to Example 4.6 of [Crandall et al., 1992] and
[Barles and Burdeau, 1995]. Nevertheless, it is also useful
for Dirichlet problem when the regularity of the boundary
is known for a nonsmooth domain. Back to Example 1,
one can easily show that existence and uniqueness holds for
any constant α ∈ (0, 2]. It is also noted that existence and
uniqueness still holds for α ∈ (0, 2] as long as the boundary
satisfies exterior cone condition, and this is also a new result.
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