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Abstract— This note proposes two equilibrium selection
methods and applies them to the power allocation game
developed in [1]. The first method has the game take place
on a sequence of time-varying graphs, which redefines the
PAG in an extensive form game framework, and selects the
subgame perfect Nash equilibria. The second method has the
power allocation game take place on a different sequence of
time-varying graphs and selects the “resilient” Nash equilibria,
where the concept of “resilience” is taken from the literature
of network security. Certain technical results as well as the
link between the two methods will be discussed. Either method
is also applicable to equilibrium selection problems involving
other network games.

Index Terms— subgame perfect equilibrium, resilience, equi-
librium selection, time-varying graph, extensive form, pure
strategy Nash equilibrium

I. INTRODUCTION

A power allocation game or PAG has been formulated
in [1] as a distributed resource allocation game between
n countries operating in a networked environment. The
game is formulated on a simple, undirected, signed graph
G whose n vertices correspond to the countries and whose
m edges represent relationships between countries. In [1],
pure strategy Nash equilibrium existence is established, and
in [2], examples of equilibrium predictions of the PAG for
countries survival are offered. The aim of this paper is
to extend the formulation to time-varying graphs and to
study how the extension can be used for selecting/refining
pure strategy Nash equilibria of the PAG. In particular it
will be shown that an equilibrium that is both subgame
perfect and “resilient” exists in any variation of the extended
game, and that subgame perfect or resilient equilibria with
particular properties exist in certain types of the extended
game. It appears that these basic ideas can also be useful
for equilibrium selection problems in other network games,
which will be discussed in an expanded version of this paper.

This paper is organized as follows. First the power allo-
cation game formulated in [1] will be briefly summarized in
Section II. Then in Section III the extended version will be
described and finally in Section IV results appropriate to the
generalization will be stated.
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II. THE POWER ALLOCATION GAME

A. Basic Idea

By the power allocation game or PAG is meant a dis-
tributed resource allocation game between n countries with
labels in n = {1, 2, . . . , n} [1]. The game is formulated on a
simple, undirected, signed graph G called “an environment
graph” [2] whose n vertices correspond to the countries and
whose m edges represent relationships between countries.
An edge between distinct vertices i and j, denoted by (i, j),
is labeled with a plus sign if countries i an j are friends and
with a minus sign if countries i and j are adversaries. Let the
set of all friendly pairs be RF and the set of all adversarial
pairs be RA. For each i ∈ n, Fi and Ai denote the sets of
labels of country i’s friends and adversaries respectively; it
is assumed that i ∈ Fi and that Fi and Ai are disjoint sets.
Each country i possesses a nonnegative quantity pi called
the total power of country i. An allocation of this power
or strategy is a nonnegative n × 1 row vector ui whose j
component uij is that part of pi which country i allocates
under the strategy to either support country j if j ∈ Fi

or to demise country j if j ∈ Ai; accordingly uij = 0 if
j 6∈ Fi ∪ Ai and ui1 + ui2 + · · · + uin = pi. The goal
of the game is for each country to choose a strategy which
contributes to the demise of all of its adversaries and to the
support of all of its friends.

Each set of country strategies {ui, i ∈ n} determines an
n× n matrix U whose ith row is ui. Thus U = [uij ]n×n is
a nonnegative matrix such that, for each i ∈ n, ui1 + ui2 +
· · ·+ uin = pi. Any such matrix is called a strategy matrix
and U is the set of all n× n strategy matrices.

B. Multi-front Pursuit of Survival

In [1] and [2], how countries allocate the power in the
support of the survival of its friends and the demise of
that of its adversaries is studied, which is in line with
the fundamental assumptions about countries’ behavior in
classical international relations theory. [?] The following
additional formulations are offered:

Each strategy matrix U determines for each i ∈ n, the
total support σi(U) of country i and the total threat τi(U)
against country i. Here σi : U → IR and τi : U → IR are
non-negative valued maps defined by U 7−→

∑
j∈Fi

uji +∑
j∈Ai

uij and U 7−→
∑

j∈Ai
uji respectively. Thus country

i’s total support is the sum of the amounts of power each of
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country i’s friends allocate to its support plus the sum of the
amounts of power country i allocates to the destruction of all
of its adversaries. Country i’s total threat, on the other hand,
is the sum of the amounts of power country i’s adversaries
allocate to its destruction. These allocations in turn determine
country i’s state xi(U) which may be safe, precarious, or
unsafe depending on the relative values of σi(U) and τi(U).
In particular, xi(U) = safe if σi(U) > τi(U), xi(U) =
precarious if σi(U) = τi(U), or xi(U) = unsafe if σi(U) <
τi(U).

In playing the PAG, countries select individual strategies
in accordance with certain weak and/or strong preferences.
A sufficient set of conditions for country i to weakly prefer
strategy matrix V ∈ U over strategy matrix U ∈ U are as
follows

1) For all j ∈ Fi either xj(V ) ∈ {safe, precarious}, or
xj(U) ∈ {unsafe}, or both.

2) For all j ∈ Ai either xj(V ) ∈ {unsafe, precarious},
or xj(U) ∈ {safe}, or both.

Weak preference by country i of V over U is denoted by
U � V .

Meanwhile, a sufficient condition for country i to be
indifferent to the choice between V and U is that xi(U) =
xj(V ) for all j ∈ Fi ∪ Ai. This is denoted by V ∼ U .

Finally, a sufficient condition for country i to strongly
prefer V over U is that xi(V ) be a safe or precarious state
and xi(U) be an unsafe state. Strong preference by country
i of V over U is denoted by U ≺ V .

III. PAG ON TIME-VARYING GRAPHS

Let G = (V, E) be called an “environment graph” as in
[2]. In this paper, we will be interested in environment graphs
which change over time. Let G(t) denote the environmental
graph at time t for t ∈ {0, 1, 2, . . . , n}. Let Fi(t) and
Ai(t) respectively be the sets of labels of country i’s friends
and adversaries at time t. Two particular sequences of the
environment graphs will be considered.

A. Sequence I: Subgame Perfect Nash Equilibrium

Let G be the fixed environment graph, and write G for the
set of all spanning subgraphs of G. A sequence of graphs
G(t), t ∈ {0, 1, 2, . . . , n} from G is an ascending chain if
G(t) ⊂ G(t + 1), t ∈ {0, 1, 2, . . . , n} where by G(t) ⊂
G(t+ 1) we mean that the edge set of G(t) is contained in
the edge set of G(t+ 1).

Sequence I: The ascending sequence G(t), t ∈
{0, 1, 2, . . . , n} reaches G from G(0) in n steps, i.e., G(n) =
G.

Rule I: At time t = 0, every country i simultaneously
allocates power to its outgoing edges, namely its external
friends and adversaries respectively in Fi − {i} and Ai

in the environment of G(0); denote the power allocation
matrix containing these allocations as U(0). (For i, uii(0)
is uniquely determined once the allocations to i’s outgoing
edges are decided; therefore, the diagonal elements of U0

can be suppressed).

At time t ∈ {1, 2, . . . , n} (t ∈ Z, every country i keeps
constant its allocations to its external friends and adversaries
in {Fi − {i}}(t − 1) and Ai(t − 1), and allocates its
reserved power uii(t− 1) to its new friends and adversaries
respectively in Fi(t)−Fi(t− 1) and Ai(t)−Ai(t− 1).

For time t ∈ {1, 2, . . . , n}, let the set of power allocation
matrices (having suppressed the diagonal elements) at layer
t be represented as U(t) ⊂ Rn×n where ∀U(t) ∈ U(t)
and i ∈ n, the total power constraint holds for country i,∑

j∈n uij(t) = pi.

The information structure of the dynamic game is com-
plete information. When making each possible allocation at
time t, each country has observed the power allocation path
prior to time t, which is

U(0), U(1), . . . , U(t− 1).

At the end of the sequence, each country i receives its state
xi(U(t), t ∈ {0, 1, 2, . . . , n}) as the outcome of the power
allocation path from t = 0 to t = n,

U(0), U(1), . . . , U(n).

In other words, the power allocation outcome is only realized
at t = n.

This dynamic game is the PAG (which is an infinite
normal-form game) in extensive form. The first investigations
of games in extensive form include [3], [4] and [5]; one
famous application is the Stackelberg game that models
market competition, where a leader acts first before the
followers choose to whether to compete with it. Formally,
the power allocation game in extensive form is a structure
with a decision tree T with n layers and a nonempty set of
decision nodes at layer t where t ∈ {0, 1, 2, . . . , n}. Each
decision node at each layer denotes the point the countries
have to decide on the allocations on the friend and adversary
relations just newly activated at t.

From each node at layer t, there grows an infinite number
of branches, the qth of which represents a possible allocation
strategy Uq(t) made by countries to those new friends and
adversaries. The number of the branches between any node
at layer t and its successors at layer t+ 1 is the cardinality
of U(t).

An immediate consequence of this extensive form game
formulation is a set of subgames of countries’ power allo-
cation being derived. Before introducing the definition of

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

898



subgames, the concept of information set is necessary. Each
decision node in the tree T represents an “information set. As
is commonly defined, an information set is a set of decision
nodes that establishes all the possible allocations that could
have taken place in the game so far, given what the players
that will act next have observed. Assuming complete and
perfect information (i.e., the power allocation path leading
to the particular decision node has already been observed by
countries), each information set in the tree is a singleton.

Usually, a subgame is defined as a game satisfying three
criteria: first, it begins with a singleton information set; sec-
ond, all successors of the initial decision node are contained
in the subgame; third, if a decision node in a particular
information set is in the subgame then all members of that
information set belong to the subgame. Therefore, in this
extensive form game framework, the q-th (q ∈ N) decision
node at layer t of T (t ∈ {0, 1, 2, . . . , n}) and all its
successors make up a subgame at layer t; let the set of
subgames at layer t be κ(t). Obviously, the total number
of decision nodes in T equals the total number of subgames.
Each path in the tree T represents a power allocation path
from t = 0 to t = n, U(0), U(1), . . . , U(n). A function η :

U(0)× U(1) . . .× U(n) −→ κ(0)× κ(1) . . .× κ(n)

maps a power allocation path to a sequence of n+1 subgames
it has traversed, where the t-th subgame of this sequence can
be represented as η(U(0), U(1), U(n))t, t ∈ {0, 1, 2, . . . , n}.

In the PAG in extensive form, it is natural to investigate
the subgame perfect Nash equilibrium:

Definition 1 (Subgame Perfection Nash Equilibrium): A
power allocation path

U∗(0), . . . U∗(t) . . . U∗(n)

based on Rule I is a subgame perfect Nash equilibrium
for the PAG Γ in extensive form assuming an ascending
sequence of environment graph if and only if there is no
profitable one-shot deviations for any i ∈ n.

Even though the PAG in extensive form is graphically
represented by a tree of infinite branches, there is only a
finite number of possible power allocation outcomes realized
at the terminal nodes of the tree, i.e., a number of 3n possible
state vectors which countries will partially order based on the
axioms in the setup of the PAG. Moreover, by definition, a
power allocation path from t = 0 to t = n is subgame perfect
Nash equilibrium if and only if it is an equilibrium in all of
the n+ 1 subgames it traverses.

B. Sequence II: “Resilient” Nash Equilibrium

In the literature of computer networking, resilience is the
ability to provide and maintain an acceptable level of service
in the face of faults and challenges to the network. In the
context of the power allocation game, intuitively speaking,

if the environment graph suffers from certain “faults”, such
as a disappearance of a friend relation, and the allocations
on the remaining graph still remain a pure strategy Nash
equilibrium, it can be said that the original pure strategy
Nash equilibrium is resilient to the change.

We say that the sequence of environmental graphs
G(t), t ∈ {0, 1, 2, . . . , n} from is a descending chain if
G(t+ 1) ⊂ G(t), t ∈ {0, 1, 2, . . . , n} where by G(t+ 1) ⊂
G(t+ 1) we mean that the edge set of G(t+ 1) is contained
in the edge set of G(t).

Sequence II: Let the descending sequence G(t), t ∈
{0, 1, 2, . . . , n} starts at G from G(0) and goes on for n
steps, i.e., G(0) = G.

Rule II: At time t ∈ {0, 1, 2, . . . , n}, every country i
keeps its allocations to its external friends and adversaries
respectively in {Fi − {i}}(t) and Ai(t) the same as it
did toward them at t − 1, and updates its reserved power
according to the following:

uii(t) = pi −
∑

j∈{Fi(t)−{i}}∪Ai(t)

uij .

In other words, country i collects its prior power allocations
on those friend and adversary relations that have disappeared
at t back into its reserved power.

Denoting the PAG assuming the environment graph G(t)
as Γ(G(t)), a definition of resilient pure strategy Nash
equilibrium is then:

Definition 2 (Resilient Nash Equilibrium): A power allo-
cation matrix U is a resilient Nash Equilibrium for the PAG
Γ if and only if, given a descending sequence of environment
graphs satisfying Sequence II, the matrix U(t) updated based
on Rule II is a pure strategy Nash equilibrium in Γ(G(t)).

IV. RESULTS

Next we compare the equilibrium predictions of the PAG
in extensive form to that of the original PAG in normal form.

Lemma 1: For any subgame prefect Nash equilibrium,
there always exists an equivalent resilient Nash equilibrium.
In other words, there can always be constructed a sequence
of the environment graphs satisfying Sequence II, where a
resilient Nash equilibrium exists, i.e., it is an equilibrium in
any PAG assuming any environment graph on this sequence.

Lemma 2: Given a pure strategy Nash equilibrium U∗, if
there exists two countries i and j such that u∗ij = u∗ji = 0,
U∗ is both subgame perfect and resilient Nash equilibrium.

Theorem 1: A power allocation matrix U∗ of the PAG
constructed using the algorithm in [1] is always subgame
prefect and resilient Nash equilibrium.

Theorem 2: A power allocation matrix U∗ of the PAG Γ
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that is a Balancing equilibrium is subgame prefect and also
resilient Nash equilibrium.

Theorem 3: In the PAG assuming an environment where
no country has external friends and the adversary relations
make up a complete graph, given any nontrivial ascending
chain of environment graphs (a trivial ascending chain is
where any subgraph in the chain is either empty or the
environment graph G itself), all countries survive. (In [2],
a country is said to survive if its total support exceeds or
is equal to its total threats, or its state is either safe or
precarious, that is, σi(U) ≥ τi(U) or equivalently xi(U) =
safe or precarious) in any subgame perfect Nash equilibrium
if and only if there does not exist a country i such that
pi >

∑
j∈Ai

pj .

Corollary 1: In the PAG assuming any environment, if
there exists a country i such that pi >

∑
j∈Ai

pj +∑
k∈

⋃
j∈Ai

Fj
pk where

⋃
j∈Ai

Fj denotes the set of friends
of country i’s adversaries, there exists subgame prefect
equilibria (also resilient) in which a country j (j ∈ Ai) is
unsafe.

V. EXAMPLE

An example of Theorem 3 is as follows. There are two
environment graphs in the sequence illustrated in Figure 1.
For better illustration, the vertices are labeled from v1 to vn.

v1

8

v2

6

v3

4

(a) GE(0)

v1

8

v2

6

v3

4

(b) GE(1)

Fig. 1: A sequence of environment graphs

The parameters of the PAG Γ are:

1) Set of countries’ labels: n = {1, 2, 3}
2) Countries’ power: [8 6 4].
3) Relations: A1 = {2, 3}, A2 = {1, 3} and A3 = {1, 2}.
4) Preferences: assume the two preference axioms in [2].

No equilibrium in which only a country survives is
subgame perfect Nash equilibrium in the PAG in extensive
form assuming the graph sequence in Figure 1. The
subgame perfect equilibrium classes are represented by
the following state vectors, [safe, precarious, precarious],
[precarious, safe, precarious], [precarious, precarious, safe]
and [precarious, precarious, precarious]. To see why this is
so, when country 1 and country 2 get to decide on the
allocations between them at t = 1 (because their adversary
relation only appears at a later stage), the country with more
remaining power may overwhelm the other country, making
it unsafe. Then having anticipated it to be unsafe at t = 1,
country i may deviate from its allocation strategy at t = 0

so as not to be the one with fewer remaining power. By this
logic, any power allocation path leading to either country 1
or country 2 being unsafe at t = 1 is not an equilibrium.
Two further take-away points are:

1) All countries will survive in any subgame prefect Nash
equilibria of this game, and this is independent of any
nontrivial ascending chain of the environment graphs.

2) However, it does depend on the sequence of the envi-
ronment graphs that which country has to be precarious
in all of the equilibria (in this example, country 3).

VI. CONCLUSION

A fully expanded paper based on this note will actually be
the first part of a dynamic framework of the PAG in changing
networked environments. This first part focuses specifically
on the problem of equilibrium selection, whose formalization
has a state vector realized only at the end of the power
allocation path. As discussed, the proposed methods may be
of independent interest, that is, being extrapolated to equilib-
rium selection problems in other network games. The second
part will be on the problem of countries’ distributed, optimal
control of their power allocation paths, whose formulation
will have a state or payoff vector realized at the end of every
period on the power allocation path. In addition to countries’
relations that may change over time, their power may also
change based on a certain growth function. These aspects
would make this second part not a simple generalization
of the first part but address a completely different research
question.
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