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Abstract— In an earlier paper, [1], we have considered the
Maximum Likelihood (ML) localization of a stationary nuclear
source using the time of arrival of particles modeled as a Poisson
process. In this paper we consider whether the ML location
estimate characterized in [1] is unique. In particular, we show
that the question of uniqueness is equivalent to whether or not
the root locus of a certain transfer function admits a single pair
of nonzero imaginary axis crossing.

Index Terms— Nuclear source, maximum likelihood localiza-
tion, Poisson, root locus.

I. INTRODUCTION

Identification and tracking of nuclear materials has re-
cently attracted significant research [1]- [5], and is challeng-
ing as nuclear materials vary widely in concentrations and
compositions [5], are concealed by shielding material, and
submerged in background radiation [6]. Detectors [7] and
sensors used in practical tracking systems, also vary widely
in their quality. Ultimately the detection of nuclear radiation
comprises a sequence of events, modeled as a Poisson arrival
process [8], [9], involving the absorption of discrete particles.

Source localization with Poisson models has been studied
by [1] and [2] among others. While [2] uses a non-concave
expectation maximization process, [1] uses Maximum Like-
lihood (ML) localization. In particular [1] considers an ideal
detector, free from timing inaccuracies caused by the quan-
tum energy-time uncertainty principle, [11], that travels with
a known fixed velocity. It formulates a likelihood function
for localizing a stationary source from a finite set of arrival
times, t1, · · · , tn, measured over an infinite horizon.

A key question unanswered in [1] is whether the likelihood
function is unimodal. One should note that for n > 2,
simulations indicate that the likelihood function is indeed
unimodal. In this paper we make strides towards resolving
this question by relating unimodality to a root locus problem.
This permits the use of standard root locus methods to
pinpoint the maximum. Further, rules of thumb for root loci
suggest the uniqueness of this maximum.
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Section II provides the log likelihood function derived
in [1]. Section III gives a reinterpretation of the maximum
which has an interesting geometrical implication. Section IV
establishes the equivalence with a root locus problem.
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Fig. 1. Ideal detector moving in a straight line with constant velocity.

II. PROBLEM FORMULATION

Suppose the source is at [x0,y0]
T ∈ R2 and the detector

travels at a constant velocity along the x axis, i.e. with a
known velocity [v,0]T , see Figure 1. The time of arrival
of particles at the detector is an inhomogeneous Poisson
process, [15], with mean arrival rate:

λ (t) =
A0

y2
0 +(x0− vt)2 , (1)

where A0 is a source strength parameter that depends on
the type, shape and volume of the nuclear source as well as
detector characteristics. This precludes directional detectors
like CZT Compton scattering devices [13] but is rather
consistent with scintillation devices [14] in isotropic media.

Assuming that a set of independent arrival times
{t1, · · · , tn} observed over an interval [T1,T2], [1] shows that
the conditional density f (t1, · · · , tn|A0,x0,y0) obeys

arg max
A0,x0,y0

log( f (t1, · · · , tn|A0,x0,y0))= arg max
A0,x0,y0

L(A0,x0,y0)

where the modified log likelihood function obeys

L(A0,x0,y0) =−
∫ T2

T1

λ (t)dt +
n

∑
i=1

logλ (ti).

This assumes an ideal detector detecting particle counts over
vanishingly small intervals. Practical sensors with detection
time bins as short as 150 ms exist, [12], and approach the
performance of an ideal sensor. As for large t, λ (t) in
(1) approaches zero, this ensures a finite n. We study an
observation interval (T1,T2) that extends over the entire real
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axis i.e. with

lim
T1→−∞

lim
T2→∞

L(A0,x0,y0) =
πA0

vy0
+n logA0

+
n

∑
i=1

log
(

1
y2

0 +(x0− vti)2

)
.

Thus, A, x and y, defined as the ML estimates of A0, x0
and y0, must respectively satisfy the critical equations

A =
nvy
π

, (2)

n

∑
i=1

x− vti
y2 +(x− vti)2 = 0, (3)

n

∑
i=1

1
y2 +(x− vti)2 =

n
2y2 . (4)

From (2) we see that the uniqueness of these estimates hinges
on (3) and (4) having a unique solution. As neither these
nor the physical set up distinguish between ±y and y = 0 is
meaningless, uniqueness requires that a (x,y), y > 0 satisfy
(3) and (4).

This is satisfied if there is a unique x ∈ R for which
there is a positive real y such that (3) and (4) are satisfied;
and if at this unique x the y > 0 satisfying (3) and (4) is
unique. Also note that for n = 2, there is no unique solution
as any y2 = |x− vt1||x− vt2| satisfies both (3) and (4). This
is unsurprising as three quantities cannot be estimated from
two observations. Thus we will focus on n > 2.

III. REFORMULATION

We now provide two reformulations of the simultaneous
equations (3) and (4). The first provides a geometric inter-
pretation that we find attractive. The second leads in Section
IV to a root locus view point.

Observe that (3) and (4) simultaneously hold for y 6= 0 iff

∑
n
i=1

x−vti
y2+(x−vti)2 = 0 and ∑

n
i=1

y
y2+(x−vti)2 = n

2y

⇔ ∑
n
i=1

x−vti− jy
y2+(x−vti)2 − n

2 jy = 0

⇔ 1
2 jy ∑

n
i=1

x−vti− jy
x−vti+ jy = 0⇔ ∑

n
i=1

jy−x+vti
x−vti+ jy = 0, (5)

where the last equality uses the fact that (x,y) solves (3, 4)
iff so does (x,−y). As each summand in (5) has magnitude
1, with θi = arctan[y/(x− vti)], (5) is equivalent to

n

∑
i=1

e j2θi = 0. (6)

As depicted in Figure 2 for n = 3, the θi represent the angle
made by the source with the x-axis at each point of detection.
That (6) holds at these angles is worthy of future exploration.

We next set up the promised root locus framework.
Theorem 3.1: For a given set of times t1 < t2 < · · · < tn,

and a given real s define ci = vti and c = [c1, · · · ,cn]
T . Define

the polynomial

p(s,c,K) =
n

∑
i=1

(s+K− ci)∏
k 6=i

(s+ ck−K), K ∈ R. (7)

Then real x and y > 0 solve (3) and (4) iff p( jy,c,x) = 0.

v𝑡𝑡1 v𝑡𝑡2 v𝑡𝑡3

𝜃𝜃1 𝜃𝜃2 𝜃𝜃3

𝑥𝑥 + 𝑗𝑗𝑗𝑗

Fig. 2. Depiction of θi when n = 3.

Proof: As the foregoing shows, any (x,y), y 6= 0, that
solve (3) and (4) obey (5). As y 6= 0, this is equivalent to
p( jy,c,x) = 0 for y > 0.

Thus (3) and (4) have a unique solution, with real x and y> 0
iff there is one and only one real K =K∗ such that p(s,c,K∗)
has nonzero imaginary roots and there is exactly one such
pair. If this pair of roots are ± jy∗ then [x,y] = [K∗,±y∗] are
the only solutions of (3) and (4) for which y 6= 0. For ease
of calculation below, note that if a ci < 0, we could replace
each ci by ci +L and K by K +L for a sufficiently large L
to make the following hold without loss of generality.

Assumption 3.1: For all i, ci = sti > 0.

IV. A ROOT LOCUS VIEW

In view of Theorem 3.1 we focus on the polynomial in
(7). We have the following lemma.

Lemma 4.1: With z = s−K and

f (s,c,K) =
n

∏
i=1

(s+ ci−K), (8)

the polynomial in (7) obeys

p(s,c,K) = 2s f ′(s,c,K)−n f (s,c,K) (9)
= 2K f ′(z,c,0)+ p(z,c,0) (10)

Proof: Equation (9) follows from:

p(s,c,K) =
n

∑
i=1

(s+K− ci)
n

∏
k=1,k 6=i

(s−K + ck)

=
n

∑
i=1

(2s− (s−K + ci))
n

∏
k=1,k 6=i

(s−K + ck)

= 2s
n

∑
i=1

n

∏
k=1,k 6=i

(s−K + ck)−n
n

∏
k=1

(s−K + ck)

= 2s f ′(s,c,K)−n f (s,c,K)

Now f (s,c,K) = ∏
n
i=1(s−K + ci) = f (s−K,c,0) and con-

sequently f ′(s,c,K) = ∂ f (z,c,0)
∂ z |z=s−K = f ′(s−K,c,0). This

means that with z = s−K, (10) follows from (9) and the
following calculation:

p(s,c,K) = 2s f ′(s,c,K)−n f (s,c,K)

= 2s f ′(s−K,c,0)−n f (s−K,c,0)
= 2(z+K) f ′(z,c,0)−n f (z,c,0)
= 2K f ′(z,c,0)+2z f ′(z,c,0)−n f (z,c,0)
= 2K f ′(z,c,0)+ p(z,c,0).
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Lemma 4.1 establishes an equivalence between the prob-
lem of showing there is a single (x,y) with y > 0 for which
p( jy,c,x) = 0, and a standard root locus problem, which we
now outline. Define with z = s−K,

q(z,c,K) = p(s,c,K)

Now observe that for (3) to hold, at least one summand
must be negative and another positive. Under Assumption
3.1, this must mean that x must be positive. Thus as K = x
in Theorem 3.1, (3) can only hold if K > 0. Further the zeros
of q(z,c,K) are identical to those of

h(z,c,K) = 1+K
2 f ′(z,c,0)
p(z,c,0)

. (11)

Finding x and y thus reduces to a standard root locus problem
for the transfer function h(z,c,K). Specifically, we need to
see if with z on this root locus z+K = s crosses the positive
imaginary axis at only a single point. We now explore the
properties of this root locus. The theorem below shows that
this root locus can have at most one pair of complex roots.

Theorem 4.1: Under the notation of Theorem 3.1 suppose
c1 > c2 > · · ·> cn, n> 2 and that Assumption 3.1 holds. Then
the polynomial p(s,c,K) has at most one pair of complex
zeros which arise only if c1−K > 0 > cn−K.

Proof: Define bi = ci−K and consider two cases.
Case I: 0 /∈ {b1, · · · ,bn}. Observe −bi are the zeros
of f (s,c,K). For any interval (−bk,−bk+1) for which
−bk,−bk+1 have the same sign, there will hold s 6= 0
throughout the interval.

Without loss of generality (as will be evident from the
argument below), suppose the selected adjacent pair of zeros
of f (s,c,K) both have positive sign, i.e. 0 < −bk < −bk+1.
Now because all zeros of f (s,c,K) are real, so are all zeros
of its derivative, f ′(s,c,K), and in fact the zeros of the
derivative interlace those of f (s,c,K). This is easily seen
by Rolle’s theorem.

There is precisely one zero of f ′(s,c,K) lying in the
interval (−bk,−bk+1). Therefore f ′ and also, because s 6=
0 in the interval (−bk,−bk+1), the polynomial s f ′(s,c,K)
assume opposite signs at the points −bk,−bk+1. Therefore,
in light of (9) we see that the polynomial p(s,c,K) assumes
opposite signs at the same points −bk,−bk+1. Therefore the
polynomial has at least one zero, and necessarily an odd
number of zeros, in the interval (−bk,−bk+1).

If the bi have different signs, there are precisely n− 2
intervals (−bk,−bk+1) which do not include the origin, and
therefore there are at least n−2 real zeros of p(s,c,K), lying
in these intervals. Since p has degree n, this means it can
have at most 2 complex zeros.

If the bi have the same sign for all i, there are n− 1
intervals such that each contains one zero of p(s,c,K). None
could contain an odd number greater than one, since there
are n zeros in all. Since also all but one zero are guaranteed
real, the remaining zero must be real, assuming a value less
than −b1 or greater than −bn. Thus for p(s,c,K) to have a
complex zero there must be a bi that is negative and another
that is positive.

Case II: 0∈ {b1, · · · ,bn}. Now suppose some bi = 0. As the
bi are distinct this is the only bi that is zero. Thus dropping
the arguments c and K one can write

f (s) = sg(s) (12)

where the degree n−1 polynomial g(s) has n−1 real, distinct
and nonzero roots.Further under (12), (9) reduces to

p(s) = 2s f ′(s)−n f (s)

= 2s2g′(s)−2sg(s)−nsg(s)

= s
(
2sg′(s)− (n−2)g(s)

)
. (13)

As for n > 2, n− 2 > 0, the argument in case I shows that
2sg′(s)− (n− 2)g(s) has at least n− 3 real zeros, and thus
p(s) has has at least n−2 real zeros with one at zero. Observe
g(s) inherits all nonzero roots of f (s). Thus as argued in
case I for 2sg′(s)− (n−2)g(s) and hence p(s,c,K) to have
a complex zero there must be a bi that is negative and another
that is positive.

The next theorem sets up a relatively easy construction of
the root locus.

Theorem 4.2: Consider f ′(z,c,0) and p(z,c,0) in (10),
under Assumption 3.1, i.e. with 0< c1 < c2 < · · ·< cn. Define
βi, ordered such that βn−1 < βn−2 < · · ·< β1, to be the zeros
of f ′(z,c,0) and αi, ordered such that αn < αn−1 < · · ·< α1,
to be the zeros of p(z,c,0). Then there holds:

βn−1 < αn < βn−2 < · · ·< β1 < α2 < 0 < α1. (14)
Proof: Observe with βi < 0,

f ′(z,c,0) = n(z−β1) · · ·(z−βn−1).

Thus

p(z,c,0) = n(2z(z−β1) · · ·(z−βn−1)− (z+ c1) · · ·(z+ cn)) .
(15)

Recall from Rolle’s theorem that

−cn < βn−1 <−cn−1 < · · ·< β1 <−c1 < 0. (16)

Now in (15) for sufficiently large positive z, p(z,c,0) > 0.
Further p(0,c,0)< 0. Thus indeed α1 > 0.

Now call β0 = 0. Observe that the first summand of
p(z,c,0) given in (15) is zero for each z = βi, for all
i ∈ {0, · · · ,n−1}. Thus at each βi

p(βi,c,0) =−(βi + c1) · · ·(βi + cn).

Put differently at each z = βi, p(z,c,0) equals − f (z,c,0) =
−(z + c1) · · ·(z + cn). As the latter has a solitary root be-
tween consecutive βi, (see (16)) it follows that for each
i, p(βi,c,0)p(βi+1,c,0) < 0, i.e. a sign change occurs in
p(z,c,0) between consecutive βi. Thus there is a zero αi+2
of p(z,c,0) in each interval (βi+1,βi). As α1 is outside these
intervals, and p(z,c,0) has degree n, there is precisely one
root of p(z,c,0) in each interval (βi+1,βi) and these together
with α1 are the only roots of p(z,c,0). The result follows.

The implications of Theorem 4.2 can be gleaned from the
well-known rules of thumb for root locus construction, [16].
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Fig. 3. Root locus of h(z,c,K). The × are the poles of h(z,c,K) and o
the roots of f ′(z,c,0).

Poles chase zeros, and all points to the right of an even
number of poles and zeros are in the root locus. Thus there
are break points in the root locus of h(z,c,K) for K > 0,
in the intervals (−∞,βn−1) and (α2,α1). This is illustrated
in Figure 3 which depicts the root locus of h(z,b,K) for an
n = 5 example.

Conjecture For z on the root locus of h(z,c,K), z+K crosses
the positive imaginary axis precisely once.

Regardless of the validity of this conjecture this equiv-
alence between the solutions of (3) and (4) and the root
locus of h(z,c,K) provides a means to solving finding
the solution of these equations. Specifically, using Matlab’s
rlocus program construct the root locus of h(z,c,K), shift
it to the right everywhere by the corresponding K and
determine the values of K at which positive imaginary
axis is crossed. These estimates so obtained can be re-
fined if needed by a Newton-Raphson algorithm initialized
with this estimate. Thus consider with n = 9, the ran-
domly selected c = [1.1140,2.1875,2.5294,3.2589,3.6232,
3.6535,3.8300,0.3902,0.5079]T . With z on the part of the
root locus above the real axis the z+K is plotted in Figure
4. Evidently the imaginary axis is crossed only once in the
upper half plane. Refined plot reveals y= .9272 and x= .284.

Real
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Ima
g

0.86
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0.94
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Fig. 4. Portion of the Root locus of h(z,c,K) in the upper half plane, for
the given example.

V. CONCLUSION

In this extended abstract, we have shown an intriguing
equivalence between the ML localization of nuclear radiation
and a root locus problem. We have argued that this equiva-
lence can be exploited to obtain ML location estimate. Rules

of thumb of root locus construction suggest that this estimate
is unique.
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