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Abstract— We study invariance properties with polynomially
nonlinear and time-varying ODE systems (also termed one-
dimensional or 1D systems due to the presence of one indepen-
dent variable). The results are used to characterize time-varying
controlled invariant varieties, that is, varieties that can be
rendered invariant by state feedback. Analogous questions are
also considered for a class of PDE systems in two independent
variables (so-called two-dimensional or 2D systems), namely
those which can be described by continuous Roesser models.

I. INTRODUCTION

Controlled and conditioned invariant subspaces were intro-
duced for time-invariant linear systems by Basile and Marro
in 1969 and by Wonham and Morse in 1970 – see [1],
[2] for comprehensive surveys. This geometric approach to
control theory can be used to solve certain decoupling and
noninteracting problems. The theory has been generalized to
time-varying linear systems by Ilchmann [3] and to nonlinear
systems by Isidori [4] and several other authors. Recently,
some progress has been made in the area of polynomial
systems [5], [6], [7], [8], [9], [10], where methods from
symbolic computation can be used to test the conditions for
controlled and conditioned invariance of varieties construc-
tively. In the preprint [11], the polynomially nonlinear and
time-varying case has been addressed in the general context
of semi-algebraic sets (rather than varieties) and dynamic
compensators (rather than static state feedback). Sections
II and III of the present paper are based on this preprint,
and the main contribution of the present manuscript is a
partial generalization of results from [11] to systems given
by certain PDE in two independent variables, namely the
so-called Roesser models [12], [13].

Let K denote the field of real numbers or the field of
rational numbers, and let R := K[t, x1, . . . , xn] denote the
polynomial ring in 1 + n variables over K. Consider the
ordinary differential equation

ẋ(t) = F (t, x(t)), (1)

where F ∈ Rn. Let ϕ(t, t0, x0) denote the solution of the
initial value problem

ẋ(t) = F (t, x(t)), x(t0) = x0 (2)

at time t ∈ I(t0, x0), where I(t0, x0) denotes the maximal
existence interval of (2). By a time-varying set, we mean a
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set S ⊆ R1+n and we write S(t) := {ξ ∈ Rn | (t, ξ) ∈ S}.
We will mostly be interested in time-varying varieties V ⊆
R1×n. For this, let p1, . . . , pk ∈ R be given and consider

V := {(τ, ξ) | pi(τ, ξ) = 0 for 1 ≤ i ≤ k}

and

V (t) := {ξ ∈ Rn | pi(t, ξ) = 0 for 1 ≤ i ≤ k}.

We say that S is invariant for (1) if x0 ∈ S(t0) implies that
ϕ(t, t0, x0) ∈ S(t) holds for all t ∈ I(t0, x0).

In this paper, we derive a constructive test to decide
whether a time-varying variety V is invariant for (1). This
will be used to study the controlled invariance of V for the
time-varying nonlinear control system

ẋ(t) = f(t, x(t)) + g(t, x(t))u(t), (3)

where f ∈ Rn and g ∈ Rn×m. One says that V is controlled
invariant for (3) if there exists α ∈ Rm such that the feedback
law u(t) = α(t, x(t)) will lead to a closed loop system
ẋ(t) = F (t, x(t)) with F := f+gα for which V is invariant.

The total time derivative of p ∈ R along F ∈ Rn is
defined by

LF (p) :=
∂p

∂t
+

n∑
i=1

∂p

∂xi
Fi.

II. INVARIANCE

Lemma 1: Let S ⊆ R1+n be a time-varying set. Define

J (S) := {p ∈ R | p(τ, ξ) = 0 for all (τ, ξ) ∈ S}.

If S is invariant for (1), then

LF (p) ∈ J (S) for all p ∈ J (S).
Proof: Consider (2) with x0 ∈ S(t0) and let ϕ(t, t0, x0)

denote its solution at time t. By assumption, we have
ϕ(t, t0, x0) ∈ S(t) for all t ∈ I(t0, x0). Let p ∈ J (S) be
given. Then p(t, ϕ(t, t0, x0)) = 0 holds for all t ∈ I(t0, x0).
Taking the total time derivative, we get

LF (p)(t, ϕ(t, t0, x0)) = 0.

Plugging in t = t0, this yields

LF (p)(t0, x0) = 0.

Since (t0, x0) ∈ S was arbitrary, we may conclude that
LF (p) ∈ J (S). �

Theorem 1: Let V ⊆ R1+n be a time-varying variety.
Then V is invariant for (1) if and only if

LF (p) ∈ J (V ) for all p ∈ J (V ).
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Proof: Only the “if” part needs to be proven. Since J (V )
is an ideal in the Noetherian ring R, it is finitely generated,
say J (V ) = 〈p1, . . . , pk〉. By assumption, we have

LF (pi) =

k∑
j=1

aijpj

for some aij ∈ R. Let t0, x0 with x0 ∈ V (t0) be given.
Consider yi(t) := pi(t, ϕ(t, t0, x0)). Taking the total time
derivative, we obtain

ẏi(t) = LF (pi)(t, ϕ(t, t0, x0)) =

k∑
j=1

aij(t, ϕ(t, t0, x0))yj(t).

Set Aij(t) := aij(t, ϕ(t, t0, x0)) and note that A is continu-
ous on I(t0, x0). Thus ẏ(t) = A(t)y(t) and y(t0) = 0 imply
that y ≡ 0 on I(t0, x0). This means that (t, ϕ(t, t0, x0)) ∈ V ,
or equivalently, ϕ(t, t0, x0) ∈ V (t) for all t ∈ I(t0, x0). �

Corollary 1: Let V ⊆ R1+n be a time-varying variety.
Then V is invariant for (1) if and only if it is positive
invariant for (1).

Proof: Only the “if” part needs to be proven. Using the
notation introduced in the proof of Lemma 1, the function
t 7→ p(t, ϕ(t, t0, x0)) is smooth. Hence its vanishing for all
t0 ≤ t ∈ I(t0, x0) implies that its derivative at t = t0 must
be zero, that is, LF (p)(t0, x0) = 0. This shows that positive
invariance of V is sufficient to guarantee that LF (p) ∈ J (V )
for all p ∈ J (V ). By Theorem 1, the latter condition already
implies invariance of V . �

We remark that in our setting, the function t 7→
p(t, ϕ(t, t0, x0)) is even real-analytic. Thus its vanishing for
all t0 ≤ t ∈ I(t0, x0) implies that it is identically zero on
I(t0, x0). This yields an alternative proof of Corollary 1.

The condition of Theorem 1 can be turned into a construc-
tive test, since it is equivalent to

LF (pi) ∈ 〈p1, . . . , pk〉 for all 1 ≤ i ≤ k,

where J (V ) = 〈p1, . . . , pk〉. This is due to the fact that
LF (·) is additive and satisfies the product rule LF (ap) =
LF (a)p+ aLF (p). Let p := [p1, . . . , pk]T and let

∂p

∂x
=


∂p1

∂x1
. . . ∂p1

∂xn

...
...

∂pk

∂x1
. . . ∂pk

∂xn


denote the Jacobian of p w.r.t. x. Moreover, let ∂p

∂t =

[∂p1

∂t , . . . ,
∂pk

∂t ]T and LF (p) = [LF (p1), . . . , LF (pk)]T . Then
V is invariant for (1) if and only if the inhomogeneous linear
system of equations

[p1Ik, . . . , pkIk]γ = LF (p)

has a solution γ ∈ Rk2

. This condition can be tested using
Gröbner basis algorithms [14], [15]. Moreover, given V , we
may compute the set

M := {F ∈ Rn | V is invariant for ẋ(t) = F (t, x(t))} (4)

as follows: Solve the inhomogeneous linear system of equa-
tions [

−∂p
∂x

p1Ik . . . pkIk

]
Γ =

∂p

∂t
(5)

over R. Then

M = {πn(Γ) | Γ solves (5)},

where πn denotes the projection onto the first n components.
We note that if M is nonempty, then it has the structure of an
affine module, that is M = µ+M0, where µ is a particular
element of M and M0 ⊆ Rn is a submodule.

Example: Let V be defined by the equation t(x2+y2) = 1,
where we write x, y instead of x1, x2 for simplicity. Using
the computer algebra system SINGULAR [16], it can be
checked that J (V ) is indeed generated by t(x2 + y2) − 1.
Note that V (t) is a circle of radius 1√

t
for t > 0, and empty

for t ≤ 0. Thus the question of invariance is relevant only
for positive times. Using SINGULAR, we obtain

M = −1

2

[
x(x2 + y2)
y(x2 + y2)

]
+M0,

where

M0 = 〈
[
−y
x

]
,

[
txy

ty2 − 1

]
,

[
tx2 − 1
txy

]
〉.

If we perform the same computation over R(t)[x, y], we get

M = −1

2

[
x/t
y/t

]
+M0.

III. CONTROLLED INVARIANCE

Consider the control system (3). A time-varying variety V
is controlled invariant for (3) if there exists α ∈ Rm such that
V is invariant for ẋ(t) = F (t, x(t)) with F := f + gα. This
is true if and only if f +gα belongs to the set M = µ+M0

defined in (4). However, f + gα ∈ µ+M0 is equivalent to

f − µ ∈M0 + im(g).

This condition is another inhomogeneous linear system of
equations over R. For this, let M0 be generated by the
columns of a matrix h. Then V is controlled invariant for
(3) if and only if

[−g, h]∆ = f − µ (6)

has a polynomial solution ∆. Moreover, the set of all
feedback laws rendering V invariant is given by

A = {πm(∆) | ∆ solves (6)},

where πm denotes the projection onto the first m compo-
nents. The set A is either empty or it has the structure of an
affine module.
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IV. ROESSER MODELS

Roesser [12] proposed his (linear, discrete, and time-
invariant) model for image processing in 1975. Since then,
it has become one of the most popular models in two-
dimensional systems theory. Its nonlinear, continuous, and
time-varying version is given by

∂x1

∂t1
= F1(t1, x1(t1, t2), t2, x2(t1, t2))

∂x2

∂t2
= F2(t1, x1(t1, t2), t2, x2(t1, t2)),

(7)

where R := K[t1, x11, . . . , x1n1
, t2, x21, . . . , x2n2

] and Fi ∈
Rni . Typically, ti will be spatial variables, but we keep the
allusion to time to emphasize the connection with the first
part of the paper. Existence and uniqueness questions with
these models have been studied by David et al. [17], [18].
Together with the initial data

x1(t01, t2) = ψ1(t2) and x2(t1, t
0
2) = ψ2(t1),

where ψi : R → Rni are given smooth functions, the equa-
tions (7) admit a unique solution in some open neighborhood
I = I(t01, ψ1, t

0
2, ψ2) of (t01, t

0
2). Let Si ⊆ R1+ni be time-

varying sets and let Si(ti) := {ξi ∈ Rni | (ti, ξi) ∈ Si}. Set
S := S1×S2 ⊆ R1+n1+1+n2 . We say that S is invariant for
(7) if

ψ1(t2) ∈ S1(t01)∀t2
ψ2(t1) ∈ S2(t02)∀t1

}
⇒
{
x1(t1, t2) ∈ S1(t1)∀t ∈ I
x2(t1, t2) ∈ S2(t2)∀t ∈ I,

where t = (t1, t2). In particular, let Vi ⊆ R1×ni be time-
varying varieties, say, V1 = {(τ1, ξ1) | pi(τ1, ξ1) = 0}
and V2 = {(τ2, ξ2) | qj(τ2, ξ2) = 0}, where pi ∈ R1 :=
K[t1, x11, . . . , x1n1

] and qj ∈ R2 := K[t2, x21, . . . , x2n2
].

Then

V = {(τ1, ξ1, τ2, ξ2) | pi(τ1, ξ1) = 0, qj(τ2, ξ2) = 0}.

The total time derivative w.r.t. t1 of p ∈ R1 along F1 ∈ Rn1

is given by

LF1(p) =
∂p

∂t1
+

n1∑
i=1

∂p

∂x1i
F1i.

The total time derivative w.r.t. t2 of q ∈ R2 along F2 ∈ Rn2

is given by

LF2(q) =
∂q

∂t2
+

n2∑
j=1

∂q

∂x2j
F2j .

Define

J (S1) = {p ∈ R1 | p(τ1, ξ1) = 0 for all (τ1, ξ1) ∈ S1},

J (S2) = {q ∈ R2 | q(τ2, ξ2) = 0 for all (τ2, ξ2) ∈ S2},

and J (S) = {r ∈ R | r vanishes on S}.

Lemma 2: If S = S1 × S2 is invariant for (7), then

LF1(J (S1)) ⊆ J (S) and LF2(J (S2)) ⊆ J (S).
Proof: Let (t01, ξ1, t

0
2, ξ2) ∈ S. Let ψ1 ≡ ξ1 and ψ2 ≡ ξ2

be constant functions. Then ψ1(t2) = ξ1 ∈ S1(t01) for all
t2 and ψ2(t1) = ξ2 ∈ S2(t02) for all t1. Let x = (x1, x2)
denote the solution to (7) resulting from these initial data.

Let p ∈ J (S1). By assumption, p(t1, x1(t1, t2)) = 0 for all
(t1, t2) ∈ I . Taking the total time derivative w.r.t. t1, we
obtain

LF1(p)(t1, x1(t1, t2), t2, x2(t1, t2)) = 0.

Plugging in t1 = t01, t2 = t02, this yields

LF1
(p)(t01, ξ1, t

0
2, ξ2) = 0.

Since (t01, ξ1, t
0
2, ξ2) was an arbitrary element of S, we may

conclude that LF1
(p) vanishes on S. The second statement

is analogous. �
Theorem 2: Let V = V1 × V2 be a time-varying variety.

Then V is invariant for (7) if and only if

LF1(J (V1)) ⊆ J (V ) and LF2(J (V2)) ⊆ J (V ).

Proof: Only the “if” part needs to be proven. We will
use the fact that J (V1 × V2) = 〈J (V1),J (V2)〉 [13]. Let
J (V1) = 〈p1, . . . , pk〉 ⊆ R1 and J (V2) = 〈q1, . . . , ql〉 ⊆
R2. Then J (V ) = 〈p1, . . . , pk, q1, . . . , ql〉 ⊆ R. By assump-
tion, we have

LF1(pi) =
∑k

j=1 aijpj +
∑l

j=1 bijqj

and
LF2

(qi) =
∑k

j=1 cijpj +
∑l

j=1 dijqj

for some aij , bij , cij , dij ∈ R. Let ψ1(t2) ∈ V1(t01) for all t2
and ψ2(t1) ∈ V2(t02) for all t1. Let x = (x1, x2) denote the
solution resulting from these initial data. Define yi(t1, t2) :=
pi(t1, x1(t1, t2)) and zi(t1, t2) := qi(t2, x2(t1, t2)). Taking
the total time derivatives w.r.t. t1 and t2, respectively, we
obtain[

∂y
∂t1
∂z
∂t2

]
(t1, t2) =

[
A B
C D

]
(t1, t2)

[
y
z

]
(t1, t2),

where Aij(t1, t2) := aij(t1, x1(t1, t2), t2, x2(t1, t2)) and
analogously for B,C,D. This is a linear time-varying
Roesser model in which A,B,C,D are continuous func-
tions of time. By assumption on the initial data, we
have yi(t

0
1, t2) = pi(t

0
1, ψ1(t2)) = 0 and zi(t1, t

0
2) =

qi(t
0
2, ψ2(t1)) = 0 for all i, that is, y(t01, t2) = 0 for

all t2 and z(t1, t
0
2) = 0 for all t1. By the existence and

uniqueness results from [17], [18], this implies that y and
z are identically zero on I . Thus x1(t1, t2) ∈ V1(t1) and
x2(t1, t2) ∈ V2(t2) holds for all (t1, t2) ∈ I . �

Assume that J (V1) = 〈p1, . . . , pk〉 and J (V2) =
〈q1, . . . , ql〉. Set p = [p1, . . . , pk]T and q = [q1, . . . , ql]

T and
let ∂p

∂x1
, ∂q

∂x2
denote their Jacobians w.r.t. xi. Moreover, let

∂p
∂t1

, ∂q
∂t2

and LF1
(p), LF2

(q) be defined as usual. Thus V =
V1×V2 is invariant for (7) if and only if the inhomogeneous
linear systems of equations

[p1Ik, . . . , pkIk, q1Ik, . . . , qlIk]θ1 = LF1
(p)

and
[p1Il, . . . , pkIl, q1Il, . . . , qlIl]θ2 = LF2(q)
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have solutions θ1 ∈ Rk(k+l) and θ2 ∈ Rl(k+l). Let Mi denote
the set of all Fi ∈ Rni such that V is invariant for (7).
Consider [

− ∂p

∂x1
p1Ik . . . qlIk

]
Θ1 =

∂p

∂t1
(8)

and [
− ∂q

∂x2
p1Il . . . qlIl

]
Θ2 =

∂q

∂t2
. (9)

Then
M1 = {πn1

(Θ1) | Θ1 solves (8)}

and
M2 = {πn2

(Θ2) | Θ2 solves (9)},

where πni
denotes the projection onto the first ni compo-

nents.
Example: Let n1 = 2, n2 = 1 and let V1 ⊆ R2 be given

by t1(x2 + y2) = 1, V2 = {0}. For simplicity, we denote
the three partial states by x, y, z instead of x11, x12, x21.
Using SINGULAR, we may check that J (V1) is generated by
t1(x2 +y2)−1 and that J (V2) is generated by z. Moreover,
we can compute M2 = 〈z, t1(x2 + y2)− 1〉 and

M1 = −1

2

[
x(x2 + y2)
y(x2 + y2)

]
+M0

1 ,

where M0
1 =

〈
[
z
0

]
,

[
0
z

]
,

[
−y
x

]
,

[
t1xy

t1y
2 − 1

]
,

[
t1x

2 − 1
t1xy

]
〉.

Finally, consider the control system
∂x1

∂t1
= f1(t1, x1, t2, x2) + g1(t1, x1, t2, x2)u

∂x2

∂t2
= f2(t1, x1, t2, x2) + g2(t1, x1, t2, x2)u,

where x1, x2, and u depend on t1, t2. For controlled invari-
ance, we need to check whether there exists α ∈ Rm such
that

(f1, f2) + (g1, g2)α ∈M1 ×M2.

Since the sets Mi are affine modules, say, Mi = µi+M
0
i for

some submodules M0
i ⊆ Rni , this amounts to another solv-

ability test for an inhomogeneous linear system of equations
over R. Let M0

i be generated by the columns of a matrix
hi. Then we need to test whether[

−g1 h1 0
−g2 0 h2

]
Λ =

[
f1 − µ1

f2 − µ2

]
(10)

has a polynomial solution Λ. Thus the set of all feedback
laws rendering V invariant is given by

A = {πm(Λ) | Λ solves (10)},

which is either empty or an affine module.

CONCLUDING REMARK

In this paper, we have addressed 2D time-varying varieties
of the special form V (t1, t2) = V1(t1)×V2(t2). The general
case V (t1, t2) = V1(t1, t2)× V2(t1, t2) is a topic for future
research. For instance: Given ξ1 ∈ V1(t01, t

0
2), is it always

possible to find a smooth function ψ1 of t2 with ψ1(t02) = ξ1
such that ψ1(t2) ∈ V1(t01, t2) for all t2 ∈ R? Such property
is needed for generalizing Lemma 2 to the general situation.
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