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Abstract— Symmetry groups of PDEs allow to transform
solutions continuously into other solutions. In this paper, we
use this property for the observability analysis of nonlinear
PDEs with input and output. Based on a differential-geometric
representation of the nonlinear system, we derive conditions
for the existence of special symmetry groups that do not
change the trajectories of the input and the output. If such a
symmetry group exists, every solution can be transformed into
other solutions with the same input and output trajectories but
different initial conditions, and this property can be used to
prove that the system is not observable. We also put emphasis
on showing how the approach simplifies for linear systems, and
how it is related to the well-known observability concepts from
infinite-dimensional linear systems theory.

Index Terms— differential geometry, nonlinear partial differ-
ential equations, observability, symmetry groups

I. INTRODUCTION

Symmetry groups of (nonlinear) partial differential equa-
tions (PDEs) were introduced by S. Lie in the late nineteenth
century, and have a wide range of applications. Roughly
speaking, a symmetry group of a system of PDEs is a group
which transforms solutions of the system into other solutions,
see [1]. Thus, symmetry groups can be used to construct
new solutions from given ones. In this contribution, we shall
employ symmetry groups to analyze the observability – or
rather, to prove the non-observability – of nonlinear infinite-
dimensional systems with input and output.

The mathematical framework for the calculation of sym-
metry groups is differential geometry. Even though they
are probably not as widely used as functional-analytic ap-
proaches, differential-geometric methods have turned out to
be well-suited for the system- and control-theoretic analysis
of PDEs, see e.g. [2], [3], [4], [5], [6], [7], or [8], to mention
but a few.

The observability problem is about determining the initial
conditions of a system uniquely from the trajectories of
the input and the output. Following the terminology used
in [9] and [10] for finite-dimensional systems, a pair of
initial conditions is said to be indistinguishable if for every
admissible trajectory of the input, the system generates for
both initial conditions the same trajectory of the output.
In other words, the initial conditions are said to be indis-
tinguishable if they determine the same input-output map.
The system is said to be observable, if (locally) there exists
no pair of indistinguishable initial conditions. As pointed
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out in [9], already for finite-dimensional nonlinear systems
the choice of the input trajectory is important, since the
observability of a system does not imply that every input
trajectory distinguishes two initial conditions. For linear
systems the situation is simpler. Because of the superposition
principle the choice of the input does not matter: If one input
distinguishes two initial conditions, then every input does.

In [11] and [12], symmetry groups have already been used
to show that a system of nonlinear PDEs with input and
output is not “observable along a trajectory”. Furthermore,
in [13] they have also been used to study the accessibility of
nonlinear PDEs with input. The term “along a trajectory”
in [11] and [12] means that the observability problem is
considered only for a fixed choice of the input trajectory.
Substituting the trajectory of the input into the system
equations yields an autonomous, time-variant system, and
then symmetry groups are used to show that there exist
indistinguishable initial conditions that generate the same
output trajectory.

In this contribution, in contrast, we consider the full
observability problem, where the input is free, for a class
of second-order nonlinear PDEs with a single input and a
single output. The idea is very simple and roughly speaking
as follows: If there exists a symmetry group that does not
change the trajectories of the input and the output, then the
system cannot be observable. This is due to the fact that
such a symmetry group allows to transform every solution
into (infinitely many) other solutions with the same input
trajectory and the same output trajectory, but different initial
conditions. These initial conditions are indistinguishable, and
consequently the system is not observable. We also put
emphasis on showing how the symmetry group approach
simplifies for linear systems. In particular, we want to point
out how it is related to the well-known observability concepts
from infinite-dimensional linear systems theory, that can be
found e.g. in [14]. Of course, it is important to remark
that such a comparison suffers from the different solution
concepts for PDEs. For the calculation of symmetry groups
we need a differential-geometric framework and consider like
in [1] only smooth solutions, whereas the semigroup theory
used in [14] is based on mild or generalized solutions.

The paper is structured as follows: First, in Section II we
discuss the representation of the considered class of PDEs
as submanifolds of certain jet manifolds. This differential-
geometric framework is the basis for the calculation of
symmetry groups, which is discussed in Section III. In
Section IV we show how symmetry groups can be used
for our control-theoretic application, and demonstrate it by
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means of two examples. Finally, in Section V we show how
our approach simplifies for linear systems.

II. GEOMETRIC REPRESENTATION OF PDES

In this contribution, we consider nonlinear PDEs

∂tx
α(z, t) = fα(z, t, x(z, t), ∂zx(z, t), ∂2zx(z, t), u(t)) ,

(1)
α = 1, . . . , nx, on a 1-dimensional spatial domain Ω =
(0, 1) ⊂ R with a single input u(t), boundary conditions

gλ(t, x(0, t), ∂zx(0, t)) = 0 , λ = 1, . . . , nA
hµ(t, x(1, t), ∂zx(1, t)) = 0 , µ = 1, . . . , nB ,

(2)

and an output function

y(t) = c(t, x(z0, t), ∂zx(z0, t)) (3)

defined at some point z0 ∈ Ω̄. The functions fα, gλ, hµ,
and c are assumed to be smooth, and nA and nB denote
the number of boundary conditions at z = 0 and z = 1. As
usual, by Ω̄ = [0, 1] we denote the closure of Ω. Throughout
this paper, we take for granted that solutions of the PDEs
(1) with the boundary conditions (2) exist and are uniquely
determined by the initial condition x(z, 0) and the input
function u(t) (well-posedness, see e.g. [15]). Since our focus
is on analyzing the PDEs from a formal geometric point of
view, we shall not verify this assumption. This is in general
a difficult task, which would require additional functional-
analytic methods.

It should be noted that we consider an input u(t) that only
depends on the time t and not on the spatial variable z, even
though it acts on the domain Ω and not on the boundary. The
motivation for this restriction is that in many engineering
applications we do not have an input u(z, t) that can be
chosen as a function of z and t, but rather an input u(t) that
appears in the PDEs multiplied with some fixed function of
z, i.e. in the form b(z)u(t).

In the following, we discuss the representation of the
considered nonlinear systems as submanifolds of certain
jet manifolds. This differential-geometric framework is the
basis for the calculation of symmetry groups, see [1]. For
an introduction to differential geometry and to jet bundles
we refer e.g. to [16], [17], [18], and [19]. We frequently
use index notation and especially the Einstein summation
convention to keep formulas short and readable. Thus, we
write e.g. a vector field on an m-dimensional manifold
M with coordinates x = (x1, . . . , xm) as v = vα(x)∂xα

instead of v =
∑m
α=1 v

α(x)∂xα . The Lie derivative of a
function ϕ(x) along a vector field v is denoted by Lv(ϕ). To
avoid mathematical subtleties, we assume that all functions,
vector fields, etc., are smooth. Furthermore, it is important
to emphasize that all our investigations are only local.

For a differential-geometric representation of the PDEs
(1), we introduce the bundle (E , π, Ω̄ × R+), where
E is a (3 + nx)-dimensional manifold with coordinates
(z, t, x, u), Ω̄ × R+ is a 2-dimensional space-time man-
ifold with coordinates (z, t), and π is the canonical
projection given in coordinates by π : (z, t, x, u) →

(z, t). The second jet manifold J2(E) has coordinates
(z, t, x, u, xz, xt, uz, ut, xzz, xzt, xtt, uzz, uzt, utt), i.e. the
coordinates of E plus the derivatives of x and u with respect
to z and t up to order two.1 In this framework, the PDEs
(1) can be represented as a subvariety S2 ⊂ J2(E), which
is determined by the equations

xαt − fα(z, t, x, xz, xzz, u) = 0 , α = 1, . . . , nx
uz = 0
uzz = 0
uzt = 0 .

(4)

Here the additional equations for uz , uzz , and uzt incorporate
the restriction that we only allow solutions where u does not
depend on z. To avoid mathematical subtleties, we assume
that the Jacobian matrix of the nx + 3 functions

xαt − fα(z, t, x, xz, xzz, u) , α = 1, . . . , nx
uz
uzz
uzt

with respect to the coordinates of J2(E) has maximal rank
nx + 3 on the subvariety S2. With this assumption, S2 is a
regular submanifold of J2(E) (of codimension nx + 3).2

The boundary conditions (2) are equations on manifolds
BA and BB with coordinates (t, x, u, xz, xt, uz, ut), i.e. with
all coordinates of J1(E) except for z. Provided that the Ja-
cobian matrices of the functions gλ(t, x, xz), λ = 1, . . . , nA
and hµ(t, x, xz), µ = 1, . . . , nB have both maximal rank nA
and nB , the boundary conditions describe regular submani-
folds S1A ⊂ BA and S1B ⊂ BB .

Within this paper, we consider only smooth solutions of
PDEs. A smooth section γ : Ω̄× R+ → E

z = z xα = γαx (z, t)
t = t u = γu(z, t)

of the bundle (E , π, Ω̄ × R+) is a solution of the PDEs (1)
with the boundary conditions (2) if and only if its second
prolongation j2(γ) : Ω̄×R+ → J2(E), given in coordinates
by

z = z xα = γαx (z, t)
t = t u = γu(z, t)

xαz = ∂zγ
α
x (z, t) xαzz = ∂2zγ

α
x (z, t)

xαt = ∂tγ
α
x (z, t) xαzt = ∂t∂zγ

α
x (z, t)

uz = ∂zγu(z, t) xαtt = ∂2t γ
α
x (z, t)

ut = ∂tγu(z, t) uzz = ∂2zγu(z, t)
uzt = ∂t∂zγu(z, t)
utt = ∂2t γu(z, t) ,

(5)

satisfies
(xαt − fα(z, t, x, xz, xzz, u)) ◦ j2(γ) = 0

uz ◦ j2(γ) = 0
uzz ◦ j2(γ) = 0
uzt ◦ j2(γ) = 0

(6)

1Note that x is here an abbreviation for (x1, . . . , xnx ). Likewise, xz is
an abbreviation for (x1z , . . . , x

nx
z ), and so on.

2The superscript in S2 highlights that it is a submanifold of the second
jet manifold.
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on Ω× R+, as well as

gλ(t, x, xz) ◦ j1(γ)
∣∣
z=0

= 0

hµ(t, x, xz) ◦ j1(γ)
∣∣
z=1

= 0
(7)

on 0×R+ and 1×R+, respectively. Because of the last three
equations in (6), a section (5) can only be a solution if γu
is independent of z.

The condition (6) is equivalent to the statement that the
image of Ω×R+ under the map j2(γ), written as j2(γ)(Ω×
R+), must lie entirely in the submanifold S2 ⊂ J2(E)
determined by the equations (4), see [1]. Likewise, condition
(7) is equivalent to the statement that the images of the
boundaries 0 × R+ and 1 × R+ under the restricted maps
j1(γ)

∣∣
z=0

and j1(γ)
∣∣
z=1

, written as j1(γ)
∣∣
z=0

(0×R+) and
j1(γ)

∣∣
z=1

(1 × R+), must lie entirely in the submanifolds
S1A ⊂ BA and S1B ⊂ BB determined by the boundary
conditions.

III. SYMMETRY GROUPS

For an extensive introduction to Lie groups, transformation
groups, and symmetry groups of differential equations, we
refer to [1]. In the following, we briefly recapitulate some
basics. First, a Lie group is a group that carries the structure
of a smooth manifold, so the group elements can be con-
tinuously varied. More precisely, an r-parameter Lie group
carries the structure of an r-dimensional manifold in such
a way that both the group operation and the inversion are
smooth maps between manifolds. Second, a transformation
group acting on some manifoldM is a Lie group G together
with a map from (an open subset of) G × M to M that
satisfies certain properties. Thus, to each group element
g ∈ G there is associated a map from M to itself, and this
map is a diffeomorphism on M (where it is defined). An
important example of a (1-parameter) transformation group
is the flow Φε of a vector field v defined on M. Here the
Lie group is an interval I0 ⊂ R containing 0, and for every
ε ∈ I0, Φε is a diffeomorphism on M. We shall use this
type of transformation group throughout the paper. Finally,
a symmetry group of a system of PDEs (1) is, roughly
speaking, a transformation group acting on the space of
independent and dependent variables E that maps solutions
onto solutions. The following definition of a symmetry group
can be found in [1].

Definition 1: A symmetry group of the system (1) is a
local group of transformations G acting on an open subset of
the space of independent and dependent variables E , with the
property that whenever γ is a solution of (1), and whenever
g · γ with g ∈ G is defined, then g · γ is also a solution of
(1). Here g ·γ denotes the application of the diffeomorphism
associated with the group element g to the solution γ.

Instead of considering arbitrary transformation groups
acting on E , for our control-theoretic application we make
two simplifications. First, we consider only transformation
groups that do not affect the independent variables. With
respect to the bundle (E , π, Ω̄ × R+), this means that the
transformations shift points of E only in vertical direction,
i.e., tangent to the fibers. For this reason, we also speak of

vertical transformation groups. Second, for proving that a
system is not observable, it is sufficient to consider only 1-
parameter transformation groups, where the group elements
can be varied by a single group parameter. We denote such a
vertical 1-parameter transformation group that acts on E by
Φε, with the group parameter ε. In coordinates, it is given
by

Φε : (z, t, x, u)→ (z, t,Φx,ε(z, t, x, u),Φu,ε(z, t, x, u)) .
(8)

For every ε in some interval I0 ⊂ R containing zero, (8) is
a diffeomorphism on E , and for ε = 0 it is the identity map.

Every vertical 1-parameter transformation group Φε that
acts on E is generated by a vector field

v = vαx (z, t, x, u)∂xα + vu(z, t, x, u)∂u (9)

on E . This vector field is called the infinitesimal generator,
and can be calculated from the coordinate representation (8)
of Φε via the relation

v =
(
∂εΦ

α
x,ε

∣∣
ε=0

)
∂xα +

(
∂εΦu,ε|ε=0

)
∂u . (10)

Since we consider a transformation group (8) that does not
affect the independent variables, the infinitesimal generator
is a vertical vector field, which means that it is tangent to
the fibers of the bundle (E , π, Ω̄× R+). The transformation
group Φε is just the flow of this vector field, with the
flow parameter ε. This one-to-one correspondence between
1-parameter transformation groups and their infinitesimal
generators is very useful for the calculation of symmetry
groups. The conditions, which a transformation group Φε
must satisfy to be a symmetry group of a system of PDEs,
can be formulated in terms of its infinitesimal generator
v. Since the transformation group operates on E but the
PDEs (1) determine (algebraic) equations on J2(E), these
conditions involve the second prolongation

j2(v) = vαx∂xα + vu∂u+
+dz(v

α
x )∂xαz + dt(v

α
x )∂xαt +

+dz(vu)∂uz + dt(vu)∂ut+
+dzz(v

α
x )∂xαzz + dzt(v

α
x )∂xαzt + dtt(v

α
x )∂xαtt+

+dzz(vu)∂uzz + dzt(vu)∂uzt + dtt(vu)∂utt

of v. Here

dz = ∂z+xαz ∂xα+uz∂u+xαzz∂xαz +xαzt∂xαt +uzz∂uz+uzt∂ut

and

dt = ∂t+x
α
t ∂xα +ut∂u+xαzt∂xαz +xαtt∂xαt +uzt∂uz +utt∂ut

are the total derivatives with respect to z and t. For repeated
total derivatives of a function ϕ(z, t, x, u) we use the ab-
breviations dzz(ϕ) = dz(dz(ϕ)), dzt(ϕ) = dt(dz(ϕ)), and
dtt(ϕ) = dt(dt(ϕ)).

The vector field j2(v) is defined on J2(E), and it is the
infinitesimal generator of the second prolongation j2(Φε) :
J2(E) → J2(E) of Φε, which is a transformation group
on J2(E). The coordinate representation of j2(Φε) can
be obtained from (8) by adding all first and second total
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derivatives of Φx,ε(z, t, x, u) and Φu,ε(z, t, x, u) with respect
to z and t.

The following theorem provides conditions which ensure
that a vertical vector field generates a 1-parameter symmetry
group of the system (1) with boundary conditions (2). It
should be noted that in [1] only the case without boundary
conditions is considered. Therefore, we need additional con-
ditions, which ensure that the transformation group does not
violate the boundary conditions.

Theorem 1: If the prolongations of a smooth vector field
(9) satisfy the conditions

Lj2(v) (xαt − fα(z, t, x, xz, xzz, u)) = 0
Lj2(v)uz = 0
Lj2(v)uzz = 0
Lj2(v)uzt = 0

(11)

on the submanifold S2 ⊂ J2(E), and the conditions

Lj1(v)g
λ(t, x, xz)

∣∣
z=0

= 0

Lj1(v)h
µ(t, x, xz)

∣∣
z=1

= 0
(12)

on the submanifolds S1A ⊂ BA and S1B ⊂ BB , then it is the
infinitesimal generator of a vertical 1-parameter symmetry
group of the system (1) with the boundary conditions (2).

Proof: The condition (11) ensures that v is the infinites-
imal generator of a symmetry group of the system (1) without
boundary conditions, see [1]. Geometrically, the condition
that the Lie derivatives (11) vanish on the submanifold
S2 ⊂ J2(E) means that the vector field j2(v) is tangent
to S2. Therefore, the corresponding transformation group
j2(Φε) : J2(E)→ J2(E) has the property

j2(Φε)(S2) ⊂ S2 , (13)

i.e. it maps all points of S2 again on S2. As already remarked
before, a section γ : Ω̄×R+→ E of the bundle (E , π, Ω̄×R+)
is a solution of (1) if and only if the image of Ω×R+ under
the prolonged section j2(γ) lies in S2. If j2(γ)(Ω × R+)
lies in S2, then because of (13) also

j2(Φε ◦ γ)(Ω× R+) = j2(Φε) ◦ j2(γ)(Ω× R+)

lies in S2. Thus, the deformed section Φε◦γ is also a solution
of (1).

The additional condition (12) ensures that the new solution
Φε ◦ γ also satisfies the boundary conditions (2). The proof
relies on the same arguments as before. First, it should
be noted that the restrictions j1(v)

∣∣
z=0

and j1(v)
∣∣
z=1

of
the vector field j1(v) are vector fields on the manifolds
BA and BB . Geometrically, the condition (12) means that
j1(v)

∣∣
z=0

and j1(v)
∣∣
z=1

are tangent to the submanifolds
S1A ⊂ BA and S1B ⊂ BB determined by the boundary
conditions (2). Therefore, the transformation group generated
by v maps solutions that satisfy the boundary conditions
again on solutions that satisfy the boundary conditions.

Remark 1: It should be noted that the conditions of
Theorem 1 are only sufficient conditions. They are not
necessary, since we do not make the assumption of local
solvability. For the case without boundary conditions, which
is discussed in [1], local solvability means, roughly speaking,

that through every point of the submanifold S2 ⊂ J2(E)
there passes a solution of the PDEs (1). With this assumption,
the conditions (11) become necessary and sufficient.

IV. APPLICATION TO THE OBSERVABILITY ANALYSIS

With respect to the observability problem, we are inter-
ested in symmetry groups that deform the solutions without
changing the trajectories of input and output. If we can find
such a symmetry group Φε, then we can transform every
solution γ into other solutions Φε ◦ γ with different initial
conditions but the same input u(t) and output y(t). Thus,
the initial condition can never be determined uniquely from
the input and the output.

To construct a symmetry group that does not change
the input trajectory, we simply have to set the component
vu(z, t, x, u) of the infinitesimal generator (9) to zero, i.e. we
must consider vector fields of the form v = vαx (z, t, x, u)∂xα .
The second requirement – invariance of the output trajectory
– means that the symmetry group must satisfy

c(t, x, xz) ◦ j1(γ)
∣∣
z=z0

= c(t, x, xz) ◦ j1(Φε ◦ γ)
∣∣
z=z0

for all solutions γ and all ε ∈ I0 in some interval I0 ⊂ R
containing zero, i.e. the output must be the same for the
solution γ and all solutions Φε◦γ parametrized by the group
parameter ε. Because of j1(Φε ◦ γ) = j1(Φε) ◦ j1(γ) and
the fact that j1(v) is the infinitesimal generator of j1(Φε),
this condition holds if the Lie derivative

Lj1(v)c(t, x, xz)
∣∣
z=z0

vanishes at z = z0. The following theorem summarizes our
results.

Theorem 2: Consider the system (1) with boundary con-
ditions (2) and output (3). If there exists a smooth vector
field

v = vαx (z, t, x, u)∂xα (14)

on E with

∂uv
α
x |t=0 = 0 , α = 1, . . . , nx (15)

and
v|t=0 6= 0 (16)

that satisfies the conditions

Lj2(v) (xαt − fα(z, t, x, xz, xzz, u)) = 0 (17)

on the submanifold S2 ⊂ J2(E), the conditions

Lj1(v)g
λ(t, x, xz)

∣∣
z=0

= 0

Lj1(v)h
µ(t, x, xz)

∣∣
z=1

= 0
(18)

on the submanifolds S1A ⊂ BA and S1B ⊂ BB , and the
condition

Lj1(v)c(t, x, xz)
∣∣
z=z0

= 0 , (19)

then the system is not observable.
Proof: Because of Theorem 1, a vector field (14) that

meets (17) and (18) generates a vertical 1-parameter sym-
metry group Φε of the system (1) with boundary conditions
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(2). Since the vector field (14) has no components in ∂u-
direction, the conditions Lj2(v)uz = 0, Lj2(v)uzz = 0, and
Lj2(v)uzt = 0 of Theorem 1 are always satisfied and do not
need to be checked. For the same reason, the symmetry group
does not deform the trajectory of the input, and because of
condition (19) it does not deform the trajectory of the output.

The condition (15) means that for t = 0 the vector field
is independent of the input u. This ensures that the initial
condition of a transformed solution Φε ◦ γ depends only on
the initial condition γx(z, 0) of the original solution γ =
(z, t, γx, γu), and not on the input γu at time t = 0.3

If we consider now two initial conditions γx(z, 0) and

γ̄x(z, 0) = Φx,ε ◦ γx(z, 0) ,

where γ̄x(z, 0) is generated from γx(z, 0) by means of Φε
with some suitable value of the group parameter ε, then
they are clearly indistinguishable: For every solution γ =
(z, t, γx, γu) with initial condition γx(z, 0), because of the
properties of the symmetry group Φε there exists a solution

γ̄ = Φε ◦ γ = (z, t,Φx,ε ◦ γ︸ ︷︷ ︸ , γu︸︷︷︸)
γ̄x γ̄u

with initial condition γ̄x(z, 0) that has the same input γ̄u =
γu and yields the same output

c(t, x, xz) ◦ j1(γ̄)
∣∣
z=z0

= c(t, x, xz) ◦ j1(γ)
∣∣
z=z0

.

Consequently, for every initial condition γx(z, 0), the sym-
metry group generates a set of indistinguishable initial con-
ditions

I(γx(z, 0)) = {Φx,ε ◦ γx(z, 0)| ε ∈ I0}

by varying the group parameter ε in some interval I0 ⊂ R
containing zero. Since condition (16) guarantees that the
vector field (14) does not vanish for t = 0,4 for every initial
condition γx(z, 0) the set of indistinguishable initial condi-
tions I(γx(z, 0)) contains more than one element (in fact,
infinitely many elements parametrized by ε), and therefore
the system is not observable.

It should be noted that, even though the original system
is nonlinear, the obtained conditions (17), (18), and (19) are
linear PDEs in the unknown coefficients vαx of the vector
field (14). In the following, we demonstrate the approach by
means of two examples.

3For this reason, we often use the sloppy but convenient notation
Φx,ε ◦ γx(z, 0) to express transformed initial conditions, even though
Φx,ε(z, t, x, u) has of course more arguments than the variables x that
are determined by γx(z, 0). Note also that we write γ = (z, t, γx, γu)
instead of just γ = (γx, γu), since we defined solutions geometrically as
sections of the bundle (E, π, Ω̄× R+), and E has coordinates (z, t, x, u).

4We have included the condition (16) only for the sake of completeness.
If the vector field (14) would vanish for t = 0, the corresponding symmetry
group would generate different solutions with the same initial condition and
the same input trajectory. However, since we have assumed that the solution
is uniquely determined by the initial condition and the input (see Section
II), this cannot happen.

A. A Simple Nonlinear Example

Consider the system

∂tx
1(z, t) = x2(z, t)

∂tx
2(z, t) = ∂2zx

1(z, t)− x2(z, t)3 + u(t)
(20)

on the domain Ω = (0, 1) with Neumann boundary condi-
tions

∂zx
1(0, t) = 0

∂zx
1(1, t) = 0

(21)

at z = 0 and z = 1, and the output

y = x2(0, t) (22)

at z0 = 0. This system is a wave equation with a nonlinear
damping described by the term −x2(z, t)3, and reflecting
boundary conditions at both ends. The input u(t) can be
interpreted e.g. as an equally distributed force density, and
the output is the velocity x2 at the left end z0 = 0.

It can be verified easily that the vector field

v = ∂x1 (23)

satisfies the conditions (17), (18), and (19) of Theorem 2.
Because of

j1(v) = j2(v) = ∂x1 ,

we have

Lj2(v)
(
x1t − x2

)
= 0

Lj2(v)
(
x2t − x1zz + (x2)3 − u

)
= 0

(even on J2(E) and not only on S2 ⊂ J2(E)) as well as

Lj1(v)x
1
z

∣∣
z=0

= 0

Lj1(v)x
1
z

∣∣
z=1

= 0

(even on BA and BB , and not only on S1A ⊂ BA and S1B ⊂
BB) and

Lj1(v)x
2
∣∣
z=0

= 0 .

The other conditions (15) and (16) are obviously also sat-
isfied. Consequently, according to Theorem 2 the system is
not observable. The vector field (23) generates the symmetry
group

Φε : (z, t, x1, x2, u)→ (z, t, x1 + ε, x2, u) ,

which simply adds a constant offset to the value of x1. Thus,
it maps a solution

γ = (z, t, γ1x, γ
2
x, γu) (24)

to the solution

Φε ◦ γ = (z, t, γ1x + ε, γ2x, γu) , (25)

and the corresponding initial conditions (γ1x(z, 0), γ2x(z, 0))
and (γ1x(z, 0) + ε, γ2x(z, 0)) are indistinguishable.

In this example it is of course obvious that (25) is again
a solution and produces the same output trajectory as (24),
since in the PDEs (20), the boundary conditions (21), and
the output (22) there appear only derivatives of x1, but not
its absolute value.
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B. An Academic Example

Consider the system

∂tx
1(z, t) = x1(z, t)x2(z, t)∂2zx

1(z, t) + u(t)
∂tx

2(z, t) = ∂zx
2(z, t)− x2(z, t)2∂2zx

1(z, t)+

+x2(z,t)
x1(z,t)

(
∂zx

1(z, t)− u(t)
) (26)

on the domain Ω = (0, 1) with the boundary conditions

∂zx
1(0, t) = 0

x1(0, t)x2(0, t)− 1 = 0
(27)

at z = 0 and
∂zx

1(1, t) = 0 (28)

at z = 1. The output is

y = ∂zx
1( 1

2 , t) (29)

at z0 = 1
2 . It can be verified that the vector field

v = ∂x1 − x2

x1 ∂x2 (30)

satisfies all conditions of Theorem 2. First, since the vector
field (30) depends neither on t nor on u, the conditions (15)
and (16) are certainly met. The expressions for the prolonga-
tions j1(v) and j2(v) are too extensive to be presented here,
but it is not hard to verify with a computer algebra system
that the Lie derivatives

Lj2(v)
(
x1t − x1x2x1zz − u

)
Lj2(v)

(
x2t − x2z + (x2)2x1zz − x2

x1

(
x1z − u

))
vanish on S2 ⊂ J2(E), the Lie derivatives

Lj1(v)x
1
z

∣∣
z=0

Lj1(v)(x
1x2 − 1)

∣∣
z=0

vanish on BA (and not only on S1A ⊂ BA), and the Lie
derivative

Lj1(v)x
1
z

∣∣
z=1

vanishes on BB (and not only on S1B ⊂ BB). Since the Lie
derivative

Lj1(v)x
1
z

∣∣
z=

1
2

of the output also vanishes, all conditions are met and the
system is not observable.

V. LINEAR SYSTEMS

In this section, we shall discuss how the results of Section
IV simplify for linear systems. In the nonlinear case, the
conditions of Theorem 2 are sufficient for non-observability.
For linear systems, we show that they become necessary and
sufficient. In other words, a linear system is not observable
if and only if there exists a symmetry group that does not
change the trajectories of the input and the output. We also
show that the symmetry group approach is closely related
to the notion of non-observable subspace from infinite-
dimensional linear systems theory. Here it is important to
remark that for infinite-dimensional linear systems there exist
the concepts of approximate and exact observability, see [14].
These concepts are defined in terms of the observability map,

which assigns to each initial condition the corresponding
output trajectory that is generated by the homogenous system
without input. Approximate observability means that the
observability map is injective, whereas exact observability
requires in addition that the inverse of the observability map
is also bounded, and therefore continuous. Our definition of
observability via the non-existence of indistinguishable initial
conditions corresponds to the injectivity of the observability
map, and therefore to approximate observability in the sense
of [14].

In the following, we consider linear time-invariant PDEs
of the form
∂tx

α(z, t) = Aαβ(z)xβ(z, t) +Aαz,β(z)∂zx
β(z, t)+

+Aαzz,β(z)∂2zx
β(z, t) +Bα(z)u(t) ,

(31)

α = 1, . . . , nx, on a 1-dimensional spatial domain Ω =
(0, 1) ⊂ R with boundary conditions

Gλβx
β(0, t) +Gλz,β∂zx

β(0, t) = 0 , λ = 1, . . . , nA
Hµ
βx

β(1, t) +Hµ
z,β∂zx

β(1, t) = 0 , µ = 1, . . . , nB
(32)

and an output function

y(t) = Cβx
β(z0, t) + Cz,β∂zx

β(z0, t) (33)

defined at some point z0 ∈ Ω̄. This system class is a special
case of the nonlinear systems considered in the previous
sections, and includes e.g. the heat equation and the wave
equation, with homogenous Dirichlet, Neumann, and Robin
boundary conditions. Geometrically, the PDEs (31) can be
represented as a submanifold S2 ⊂ J2(E) described by the
equations

xαt −Aαβ(z)xβ −Aαz,β(z)xβz−
−Aαzz,β(z)xβzz −Bα(z)u = 0 , α = 1, . . . , nx

uz = 0
uzz = 0
uzt = 0 .

The additional equations for uz , uzz , and uzt again in-
corporate that we are only interested in solutions where u
does not depend on z. The boundary conditions (32) are
again equations on manifolds BA and BB with coordinates
(t, x, u, xz, xt, uz, ut), which describe submanifolds S1A ⊂
BA and S1B ⊂ BB .

A fundamental difference to the nonlinear case is that for
linear systems it is sufficient to consider symmetry groups
with infinitesimal generators of the form

v = vαx (z, t)∂xα + vu(z, t)∂u , (34)

where the coefficients only depend on the independent vari-
ables z and t. This can be justified by the superposition
principle: Because of the superposition principle, for every
pair of solutions γ and γ̄ we can construct a symmetry group

Φε : (z, t, x, u)→ (z, t, x+ (γ̄x(z, t)− γx(z, t))ε,

u+ (γ̄u(z, t)− γu(z, t))ε) (35)

with infinitesimal generator

v = (γ̄αx (z, t)−γαx (z, t))∂xα+(γ̄u(z, t)−γu(z, t))∂u , (36)
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that deforms γ for ε = 1 into γ̄. Since the vector field (36)
is of the form (34), we can construct every solution γ̄ by
deforming a given solution γ with a symmetry group of this
special type. Thus, for our application there is no advantage
in considering the general case, where the coefficients of the
infinitesimal generator (34) may also depend on x and u.

Remark 2: Note that (35) is indeed a symmetry group in
compliance with Definition 1. Because of the superposition
principle, it transforms all solutions into other solutions, and
not only the solutions γ and γ̄ that were used to construct
it.

Now let us apply Theorem 2 to the linear case. First, we
can replace the vector field (14) by the vector field

v = vαx (z, t)∂xα . (37)

With the second prolongation

j2(v) = vα∂xα + dz(v
α)∂xαz + dt(v

α)∂xαt +
+dzz(v

α)∂xαzz + dzt(v
α)∂xαzt + dtt(v

α)∂xαtt

of (37), an evaluation of the condition (17) with

fα = Aαβ(z)xβ +Aαz,β(z)xβz +Aαzz,β(z)xβzz +Bα(z)u

yields

dt(v
α)−Aαβ(z)vβ−Aαz,β(z)dz(v

β)−Aαzz,β(z)dzz(v
β) = 0 .

Since the coefficients of v only depend on z and t, the total
derivatives degenerate to partial derivatives, and we obtain

∂tv
α(z, t) = Aαβ(z)vβ(z, t) +Aαz,β(z)∂zv

β(z, t)+

+Aαzz,β(z)∂2zv
β(z, t) .

(38)

This is just the homogenous part of the original PDEs
(31). Note that in (38) there appear no variables xαt , and
therefore it makes no difference whether we evaluate (38)
on the submanifold S2 ⊂ J2(E) determined by the system
equations, or on J2(E) itself. If the conditions hold on S2,
then they also hold on J2(E). Next, an evaluation of the
condition (18) with

gλ = Gλβx
β +Gλz,βx

β
z

hµ = Hµ
βx

β +Hµ
z,βx

β
z

yields (
Gλβv

β +Gλz,βdz(v
β)
)∣∣∣
z=0

= 0(
Hµ
β v

β +Hµ
z,βdz(v

β)
)∣∣∣
z=1

= 0 .

For the same reason as above, the total derivatives degenerate
to partial derivatives, and we obtain

Gλβv
β(0, t) +Gλz,β∂zv

β(0, t) = 0

Hµ
β v

β(1, t) +Hµ
z,β∂zv

β(1, t) = 0 .
(39)

This are just the original boundary conditions (32). Since
in (39) there occur no variables xα or xαz , it makes again
no difference whether we evaluate (39) on the submanifolds
S1A ⊂ BA and S1B ⊂ BB determined by the boundary
conditions, or on BA and BB themselves. Thus, we can
already observe that the coefficients of the infinitesimal
generator (37) of a vertical symmetry group must satisfy

the homogenous part of the original PDEs (31) with the
original boundary conditions (32). Finally, an evaluation of
the condition (19) with

c = Cβx
β + Cz,βx

β
z

yields (
Cβv

β + Cz,βdz(v
β)
)∣∣
z=z0

= 0 ,

and if we replace again the total derivatives by partial
derivatives we get

Cβv
β(z0, t) + Cz,β∂zv

β(z0, t) = 0 . (40)

The left-hand side of (40) is just the original system output
(33). Thus, for the coefficients of a vector field (37) that
satisfies the conditions of Theorem 2 we need (non-trivial)
solutions of the homogenous part of the PDEs (31) with the
boundary conditions (32) that generate an output (33) which
is identically zero, i.e. y(t) = 0 for all t.

However, it is well-known from infinite-dimensional linear
systems theory that non-trivial solutions that generate an
output which is identically zero exist if and only if the system
is not (approximately) observable, see e.g. [14]: Because of
the superposition principle, for linear systems the output is
the sum of a part that depends on the initial condition and
a part that depends on the input. Therefore, the question
whether there exists a choice of the input such that two initial
conditions γx(z, 0) and γ̄x(z, 0) produce different outputs re-
duces to the question whether they produce different outputs
for the homogenous system without input. If they produce
the same output, then again because of the superposition
principle the initial condition γ̄x(z, 0) − γx(z, 0) generates
such an output which is identically zero. Consequently, for
linear systems, the conditions of Theorem 2, and therefore
the existence of a symmetry group Φε that does not change
the trajectories of the input and the output, are necessary and
sufficient for non-observability.

The set of initial conditions that generate an output iden-
tically zero is a subspace of the infinite-dimensional state
space which is called the non-observable subspace, see [14].
Thus, for linear systems, the symmetry groups Φε transform
solutions γ into other solutions Φε ◦ γ just in such a way
that the difference (Φx,ε ◦ γx(z, 0))− γx(z, 0) of the initial
conditions is an element of the non-observable subspace.

Of course, it is important to remark that a comparison
between the results of our symmetry group approach and the
observability concepts of [14] suffers from two problems.
First, as already pointed out, for the calculation of sym-
metry groups we need a differential-geometric framework
and consider like in [1] only smooth solutions, whereas
the semigroup theory used in [14] is based on mild or
generalized solutions. Second, we consider outputs which are
defined at a single point z0 ∈ Ω̄. In the geometric framework
this is perfectly possible, whereas in [14] point outputs are
not considered since the corresponding output maps are in
general not bounded. However, it would be as well possible
to consider instead of (3) distributed outputs

y(t) = c(t, x(z, t), ∂zx(z, t))
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that are defined on the whole spatial domain Ω̄. The only
difference is that in Theorem 2 the Lie derivative (19) of the
output would have to vanish for all z ∈ Ω̄, and not only at
z0. The linear counterpart of such a distributed output is

y(t) = Cβ(z)xβ(z, t) + Cz,β(z)∂zx
β(z, t) .

For the case Cz,β(z) = 0 without derivatives, such a
distributed output might correspond to a bounded map from
the state space to the output space5, and therefore fit into the
system class considered in [14].

We also want to remark that the observability problem is
often considered for a finite time interval [0, τ ] with some
τ > 0. In infinite-dimensional linear systems theory this is
called observability on [0, τ ]. Although we have presented all
our results for the infinite time interval R+, they remain valid
if we replace the space-time manifold Ω̄×R+ by Ω̄× [0, τ ].

A. A Linear Example

Consider the linear wave equation

∂tx
1(z, t) = x2(z, t)

∂tx
2(z, t) = ∂2zx

1(z, t) + u(t)
(41)

on the domain Ω = (0, 1) with Dirichlet boundary conditions

x1(0, t) = 0
x1(1, t) = 0

(42)

at z = 0 and z = 1, and the output

y = x1( 1
2 , t) (43)

at z0 = 1
2 . The input u(t) can be interpreted as an equally

distributed force density.
It may be verified that

x1(z, t) = sin(2πz) cos(2πt)
x2(z, t) = −2π sin(2πz) sin(2πt)

(44)

is a solution of the homogenous part

∂tx
1(z, t) = x2(z, t)

∂tx
2(z, t) = ∂2zx

1(z, t)
(45)

of (41) that fulfills the boundary conditions (42) and pro-
duces an output (43) which is identically zero. Thus, the
corresponding initial condition

x1(z, 0) = sin(2πz)
x2(z, 0) = 0

is an element of the non-observable subspace, and the system
is not observable. The vector field

v = sin(2πz) cos(2πt)∂x1 − 2π sin(2πz) sin(2πt)∂x2

with coefficients from (44) satisfies the conditions of The-
orem 2, and is the infinitesimal generator of a symmetry
group

Φε : (z, t, x1, x2, u)→ (z, t, x1 + sin(2πz) cos(2πt)ε,

x2 − 2π sin(2πz) sin(2πt)ε, u)

that does not change the trajectories of input and output.

5The boundedness depends of course on the chosen norms of the involved
infinite-dimensional vector spaces.

VI. CONCLUSIONS

In this paper, we have suggested to use symmetry groups
that do not change the trajectories of the input and the output
for proving that a nonlinear infinite-dimensional system is
not observable. Based on a differential-geometric system
representation, we have derived conditions for the existence
of such special symmetry groups. Even though the original
system is described by nonlinear PDEs, these conditions are
linear PDEs with additional restrictions. For linear infinite-
dimensional systems, the derived conditions simplify con-
siderably, and become necessary and sufficient for non-
observability. In fact, they coincide with the existence of a
non-trivial non-observable subspace.

REFERENCES

[1] P. Olver, Applications of Lie Groups to Differential Equations, 2nd ed.
New York: Springer, 1993.

[2] J. Pommaret, Partial Differential Equations and Group Theory: New
Perspectives for Applications. Dordrecht: Kluwer Academic Publish-
ers, 1994.

[3] O. Stormark, Lie’s Structural Approach to PDE Systems. Cambridge:
Cambridge University Press, 2000.

[4] I. Krasil’shchik, V. Lychagin, and A. Vinogradov, Geometry of Jet
Spaces and Nonlinear Partial Differential Equations. New York:
Gordon and Breach, 1986.

[5] R. Gulliver, W. Littman, I. Lasiecka, and R. Triggiani, “The case
for differential geometry in the control of single and coupled PDEs:
The structural acoustic chamber,” in Geometric Methods in Inverse
Problems and PDE Control. New York: Springer, 2004.

[6] A. van der Schaft and B. Maschke, “Hamiltonian formulation of
distributed-parameter systems with boundary energy flow,” Journal of
Geometry and Physics, vol. 42, pp. 166–194, 2002.
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