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Abstract— This paper considers a class of nonsmooth convex
optimization problems whose objective function is the sum-
mation of a twice differentiable convex function and a lower
semi-continuous convex function. Using the proximal operator
and derivative feedback ideas, we propose a smooth algorithm
for the problem and prove the convergence and correctness
of the algorithm. The design is then applied to distributed
optimization problems.

Index Terms— Nonsmooth convex optimization, proxi-
mal operator, derivative feedback, distributed optimization,
continuous-time algorithm.

I. INTRODUCTION

Nonsmooth convex optimization problems (see [1]) are
very important due to the applications in a wide range of
disciplines, such as compressed sensing [2], data fitting [3],
and portfolio optimization [4]. Gradient/subgradient methods
(see [5]), which are simple to implement and applicable
to large-scale problems, are widely studied in a variety
of results such as subgradient methods, second order al-
gorithms, and accelerated algorithms with both discrete-
and continuous-time algorithms. However, in a nonsmooth
convex optimization problem, the analysis of nonsmooth
algorithms often involves nonsmooth analysis and is quite
challenging and difficult. Therefore, a smooth algorithm for
nonsmooth problems is quite appealing for researchers due
to the ease of its analysis and implementation.

Proximal methods (see [6]) are a higher level of abstrac-
tion of classical optimization algorithms and the proximal
algorithm of a nonsmooth optimization problem may be
smooth. Like Newton’s method is a standard tool for uncon-
strained smooth optimization problems of small or modest
size, proximal algorithms are a useful tool for nonsmooth,
constrained, large-scale, or distributed optimization prob-
lems. Proximal methods are applicable and especially well-
suited to problems involving big data and large-dimensional
problems (see [6], [7]).

Recently, continuous-time algorithms for optimization
problems have become increasingly important. On one
hand, the design and analysis of continuous-time algorithms
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are often easier than discrete-time ones due to the well-
development of stability theory. On the other hands, the dis-
crete versions of continuous-time algorithms are also useful
as long as a proper step size is chosen. Thus, continuous-time
algorithms are often viewed as prototypes of discrete-time
algorithms. Additionally, in some tasks, the optimization is
conducted by physical systems or hardware, which have
continuous-time evolutions.

Many modern optimization problems arise in network
design and operation, finance, supply chain management,
scheduling, and many other areas. As a result, distributed
optimization algorithms have attracted a significant amount
of attention (see [8]–[13]). However, the proposed algorithms
for nonsmooth convex optimization problems are often non-
smooth and difficult to analyze due to the noosmoothness.
Therefore, distributed smooth algorithms for nonsmooth op-
timization problems have advantages over nonsmooth algo-
rithms on the analysis and proximal operators may be a
useful tool to achieve this goal.

The focus of this paper is to propose a smooth continuous-
time algorithm for nonsmooth convex optimization problems
using ideas from control and optimization. The contributions
of the paper are summarized as follows. Firstly, we present
a smooth continuous-time algorithm using the proximal
operator and derivative feedback, which gives a new idea
for nonsmooth optimization problems. Secondly, the conver-
gence and correctness of the proposed algorithm are proved
using stability theory, which provides novel insights into
analysis of primal-dual type algorithms. Finally, the design
method has potential applications in the area of distributed
optimization.

The remainder of the paper is organized as follows. In
Section II, the notation, some basic mathematical definitions,
and theoretical results are presented. In Section III, a nons-
mooth convex optimization problem is formulated, a smooth
continuous-time algorithm using the proximal operator and
derivative feedback ideas is proposed, and the proof for the
correctness of the algorithm is presented. In Section IV,
we apply our theoretical results to distributed optimization
problems, which gives a new idea for designing distributed
algorithms. Finally, Section V concludes this paper.

II. MATHEMATICAL PRELIMINARIES

Specifically, R denotes the set of real numbers; Rn denotes
the set of n-dimensional real column vectors; Rn×m denotes
the set of n-by-m real matrices; In denotes the n × n
identity matrix; (·)T denotes transpose. We write rankA
for the rank of the matrix A, range(A) for the range of
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the matrix A, ker(A) for the kernel of the matrix A, 1n
for the n × 1 ones vector, 0n for the n × 1 zeros vector,
and A ⊗ B for the Kronecker product of matrices A and
B. Furthermore, ‖ · ‖ denotes the Euclidean norm; ‖ · ‖p
denotes the p-norm where p ≥ 1; A > 0 (A ≥ 0) denotes
that matrix A ∈ Rn×n is positive definite (positive semi-
definite); S denotes the closure of the subset S ⊂ Rn; int(S)
denotes the interior of the subset S; dim(S) denotes the
dimension of the vector space S; Bε(α), α ∈ Rn, ε > 0,
denotes the open ball centered at α with radius ε; dist(p,M)
denotes the distance from a point p to the set M, that is,
dist(p,M) , infx∈M ‖p−x‖; x(t)→M as t→∞ denotes
that x(t) approaches the setM, that is, for each ε > 0 there
exists T > 0 such that dist(x(t),M) < ε for all t > T .

Let f be a lower semi-continuous convex function. The
proximal operator of f is

proxf (v) = arg min
x
f(x) +

1

2
‖x− v‖2.

Define the indicator function of a closed convex set Ω as
IΩ(x) = 0 if x ∈ Ω and IΩ(x) = +∞ otherwise. We have
proxIΩ(v) = PΩ(v), where PΩ(v) = arg minx∈Ω ‖x− v‖ is
the projection operator. Let ∂f(x) denote the subgradient of
f(·) at x. Then ∂f(x) is monotone, that is, (px − py)T(x−
y) ≥ 0 for all x, y, px ∈ ∂f(x), and py ∈ ∂f(y). x =
proxf (v) is equivalent to

v − x ∈ ∂f(x). (1)

Consider a system

ẋ(t) = φ(x(t)), x(0) = x0, t ≥ 0, (2)

where φ : Rq → Rq is Lipschitz continuous. The following
result is a special case of [14, Theorem 3.1].

Lemma 2.1: Let D be a compact, positive invariant set
with respect to system (2), V : Rq → R be a continuously
differentiable function, and x(·) ∈ Rq be a solution of (2)
with x(0) = x0 ∈ D. Assume V̇ (x) ≤ 0, ∀x ∈ D, and
define Z = {x ∈ D : V̇ (x) = 0}. If every point in the
largest invariant subset M of Z

⋂
D is Lyapunov stable,

where Z is the closure of Z ⊂ Rn, then (2) converges to
one of its equilibrium point.

III. OPTIMIZATION ALGORITHM DESIGN

A. Problem Description

Consider an optimization problem

min
x
f(x) + g(x), Ax− b = 0, (3)

where x ∈ Rq , A ∈ Rm×q , and b ∈ Rm, f : Rq → R is a
twice differentiable convex function, and g : Rq → R is a
proper convex closed function.

Remark 3.1: This problem is a very general model. If
g(·) is an indicator function of a convex set Ω, then g(·)
is equivalent to a set constraint x ∈ Ω; if g(x) = γ|x|1 and
f(x) is of a quadratic form, the optimization problem is a
LASSO problem. �

Then, we arrive at the following lemma by the KKT
condition of convex optimization problems.

Lemma 3.1: Suppose problem (3) satisfies Slater’s condi-
tion. A feasible point x∗ ∈ Rq is a minimizer to problem (3)
if and only if there exists λ∗ ∈ Rm such that

0q ∈ −∇f(x∗)− ∂g(x∗)−ATλ∗, (4)
0m = Ax∗ − b. (5)

B. Optimization Algorithm

To solve problem (3), we proposed a dynamical system as

ẋ(t) =proxg

[
x(t)−∇f(x(t))−ATλ(t)

]
− x(t), (6a)

λ̇(t) =A(x(t) + ẋ(t))− b, (6b)

where t ≥ 0, x(0) = x0 ∈ Rq , and λ(0) = λ0 ∈ Rm.
Algorithm (6) uses the proximal method and derivative

feedback. It is a primal-dual method to solve the saddle
points of the Lagrangian function L(x, λ) = f(x) + g(x) +
λT(Ax− b). This algorithm has two good properties:
• Convergence: Note that the saddle point dynamics ẋ =
−∇xL(x, λ) and λ̇ = ∇λL(x, λ) are not convergent
in general. The derivative feedback design plays as a
damping part to make the algorithm convergent and the
proof will be shown in the convergence analysis.

• Smoothness: Because the proximal operator proxg(·) is
continuous and nonexpansive, the proposed algorithm is
a Lipschitz continuous system, even though problem (3)
is a nonsmooth problem.

Lemma 3.2: Suppose problem (3) satisfies Slater’s condi-
tion. (x∗, λ∗) is an equilibrium of algorithm (6) if and only
if x∗ is a solution to problem (3).

Proof: By (1), proxg

[
x∗ − ∇f(x∗) − ATλ∗

]
= x∗

if and only if (4) holds. Hence, (x∗, λ∗) is an equilibrium
of algorithm (6) if and only if (4) and (5) are satisfied. By
Lemma 3.1, the conclusion is obtained

C. Convergence Analysis

In this subsection, we state the convergence result.
Theorem 3.1: Assume problem (3) has a solution and

satisfies Slater’s condition.
(i) every equilibrium of (6) is Lyapunov stable and every

solution (x(t), λ(t)) is bounded;
(ii) the trajectory (x(t), λ(t)) converges and limt→∞ x(t)

is a solution to problem (3).
Proof: (i) If problem (3) has a solution, it follows

from Lemma 3.2 that algorithm (6) has an equilibrium. Let
(x∗, λ∗) be an equilibrium of algorithm (6). By (6a), we have

ẋ+ x = proxg

[
x−∇f(x)−ATλ

]
.

It follows from (1) that

−∇f(x)−ATλ− ẋ ∈ ∂g(ẋ+ x). (7)

Similarly, we have

−∇f(x∗)−ATλ∗ ∈ ∂g(x∗). (8)
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Because g(·) is a convex function, ∂g(x) is monotone and

(−∇f(x)−ATλ− ẋ+∇f(x∗) +ATλ∗)T

·(ẋ+ x− x∗) ≥ 0.

One can obtain that

1

2

d

dt
(x− x∗)2 +

d

dt
[f(x)− f(x∗)− (x− x∗)T∇f(x∗)]

= ẋT(x− x∗) + ẋT(∇f(x)−∇f(x∗))

≤ −ẋ2 − ẋTAT(λ− λ∗)
−(x− x∗)T(∇f(x)−∇f(x∗))

−(x− x∗)AT(λ− λ∗). (9)

It follows from (6b) that

1

2

d

dt
(λ− λ∗)2 = λ̇T(λ− λ∗)

= (λ− λ∗)T(A(x+ ẋ)− b). (10)

Define V (x, λ) = f(x)−f(x∗)−(x−x∗)T∇f(x∗)+ 1
2 (x−

x∗)2 + 1
2 (λ − λ∗)2 and note that Ax∗ = b. In view of (9)

and (10), we have

V̇ (x, λ) ≤ −ẋ2 − (x− x∗)T(∇f(x)−∇f(x∗)).

Because f(·) is convex, V̇ (x, λ) ≤ −ẋ2 ≤ 0. Addi-
tionally, f(x) − f(x∗) − (x − x∗)T∇f(x∗) ≥ 0, and
hence, V (x, λ) ≥ 1

2 (x − x∗)2 + 1
2 (λ − λ∗)2. As a re-

sult, V (x, λ) is positive-definite, radically unbounded, lower
bounded. Hence, (x∗, λ∗) is Lyapunov stable and the trajec-
tory (x(t), λ(t)) is bounded.

(ii) Define

R = {(x, λ) : 0 = V̇ (x, λ)} ⊂ {(x, λ) : ẋ = 0q}.

Let M be the largest invariant set of R. It follows
from the invariance principle (Theorem 2.41 of [15]) that
(x(t), λ(t)) → M as t → ∞ and M is positive invari-
ant. Assume (x(t), λ(t)) is a trajectory of (6) such that
(x(0), λ(0)) ∈ M. Then (x(t), λ(t)) ∈ M for all t ≥ 0.
Therefore, ẋ(t) ≡ 0q and

λ̇(t) ≡ Ax(0)− b.

If λ̇(t) 6= 0m, then λ(t) becomes unbounded, which is a
contradiction to part (i). Hence, λ̇(t) = 0m and M ⊂
{(x, λ) : ẋ = 0q, λ̇ = 0m}. By part (i), every point in M is
Lyapunov stable. It follows from Lemma 2.1 that (x(t), λ(t))
converges to an equilibrium point. Due to Lemma 3.2,
limt→∞ x(t) is an solution to problem (3).

Remark 3.2: Theorem 3.1 shows the convergence proper-
ty of algorithm (6) in this paper. Part (i) of Theorem 3.1
shows that every equilibrium of the algorithm is Lyapunov
stable and the state trajectories of the algorithm are bound-
ed; part (ii) of Theorem 3.1 further proves that the state
trajectory converges to an equilibrium point. �

IV. APPLICATION TO DISTRIBUTED OPTIMIZATION

In this section, we apply our proposed algorithm to a class
of distributed optimization problems.

Some additional notation in graph theory is needed in
this section. A weighted undirected graph G is denoted
by G(V, E , A), where V = {1, . . . , n} is a set of nodes,
E ⊂ V×V is a set of edges, A = [ai,j ] ∈ Rn×n is a weighted
adjacency matrix such that ai,j = aj,i > 0 if (j, i) ∈ E and
ai,j = 0 otherwise. The Laplacian matrix is Ln = D − A,
where D ∈ Rn×n is diagonal with Di,i =

∑n
j=1 ai,j ,

i ∈ {1, . . . , n}. If the weighted graph G is undirected and
connected, then Ln = LT

n ≥ 0, rankLn = n − 1 and
ker(Ln) = {k1n : k ∈ R}.

Consider a network of n agents interacting over a graph
G. Then a distributed algorithm is need to solve

min
x∈Rnq

n∑
i=1

f i(xi) + gi(xi), (11a)

s.t. xi = xj , ∀i, j ∈ {1, . . . , n}, (11b)

where x = [xT
1 , · · · , xT

n ]T ∈ Rnq , agent i uses only its own
local data xi and exchanged information with its neighbors.

Remark 4.1: Problem (11) is a model that has vast appli-
cations. If gi(xi) is a regularized function, the problem is
a very widely used model in machine learning such as l1
regularized loss minimization and LASSO. The special case,
in which gi(xi) = IΩi

(xi), has been widely investigated in
[8], [10], [13], [16], [17]. �

Assumption 4.1: To ensure the wellposedness of the prob-
lem and algorithm, it is assumed that

1) f i is twice differentiable continuous convex for all i ∈
{1, . . . , n},

2) gi is (nonsmooth) lower semi-continuous convex for all
i ∈ {1, . . . , n}, whose proximal operator is assumed
to be easy to obtain;

3) the weighted graph G is connected and undirected.
4) there exists at least one finite solution to problem (11).
Define x , [xT

1 , . . . , x
T
n ]T ∈ Rnq and define L , Ln ⊗

Iq ∈ Rnq×nq , where Ln ∈ Rn× is the Laplacian matrix of G.
Let f(x) =

∑n
i=1 f

i(xi) and g(x) =
∑n
i=1 g

i(xi). Clearly,
problem (11) is equivalent to the following problem

min
x∈Rnq

f(x) + g(x), Lx = 0nq.

Then we propose the distributed algorithm as

ẋi(t) ∈proxgi
[
xi(t)−∇f i(xi(t))

−
n∑
j=1

ai,j(λi(t)− λj(t))
]
− xi(t), (12)

λ̇i(t) =

n∑
j=1

ai,j(xi(t) + ẋi(t)− xj(t)− ẋj(t)), (13)

where t ≥ 0, xi(0) = xi0 ∈ Ωi ⊂ Rq , λi(0) = λi0 ∈ Rq ,
and ai,j is the (i, j)th element of the weighted adjacency
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matrix of graph G. Define λ , [λT
1 , . . . , λ

T
n ]T ∈ Rnq . The

compact form of algorithm (12) is

ẋ(t) =proxg

[
x(t)−∇f(x(t))− Lλ(t)

]
− x(t), (14a)

λ̇(t) =L(x(t) + ẋ(t)), (14b)

The correctness and convergence of algorithm (14) can be
obtained following Lemma 3.2 and Theorem 3.1.

Remark 4.2: Using the proximal operator and derivative
feedback design, Algorithm (14) is a smooth algorithm and
its analysis is easier compared with nonsmooth algorithms in
[8], [10], [13]. This framework gives new ideas for designing
distributed algorithms for nonsmooth optimizations without
using nonsmooth analysis. �

V. CONCLUSION

This paper has proposed a smooth continuous-time algo-
rithm that solves a class of nonsmooth convex optimization
problems. Using the proximal operator and derivative feed-
back design, the proposed distributed algorithm is able to
solve the optimization problem with any initial value. The
convergence property of the algorithm has been analyzed
via the stability theory and the results have been applied to
a distributed nonsmooth optimization problem.
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