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I. INTRODUCTION

Recently, with the increasing scale and big data of var-
ious practical problems in natural science and engineering
fields, distributed algorithms over multi-agent networks have
attracted a significant amount of research attention (see [1]–
[4]). Both discrete-time and continuous-time algorithms (see
[1]–[4]) have been proposed and investigated for distributed
optimization with various types of constraints. Nowadays,
continuous-time algorithms have received much attention in
[2]–[6], partially because some continuous-time approaches
may provide an effective tool for the optimization analysis
and design, though distributed designs for many important
problems are still challenging.

The solution to linear algebraic equations of the form
Ax = b, where A is a matrix and x, b are vectors of ap-
propriate dimensions, in a multi-agent network has attracted
much interest and has been extensively studied in [5]–[10].
The significant results in [5]–[9] provided various distributed
algorithms with the standard case that each agent knows
a few rows of A and b, while [10] proposed a distributed
computation approach for another standard case, where each
agent has the knowledge of a few columns of matrix A.

As we know, the algorithms to solve matrix equations such
as Sylvester equations and Lyapunov equations, with linear
algebraic equations as their special cases, are important and
rapidly developed (referring to [11], [12] and the references
therein for details). Although the distributed computation
of Ax = b has been studied in the past several years, the
results for distributed computation of general linear matrix
equations are quite few, though [13] studied the solution to
the matrix equation of the form AXB = F . One commonly
used form is

∑r
i=1AiXBi =

∑r
i=1 Ci, and the computation

of its solution X plays a fundamental role in many impor-
tant application problems such as the computation of the
generalized Sylvester equations (see [11], [12], [14]). In fact,
when the r in the general linear matrix equation is more than
two and even larger, the computational complexity increases
much if we still deal with the problem with some traditional
ideas. Meanwhile, the algorithms in [13] solving the equation
AXB = F can not applied directly to the structure which
is mentioned in this paper.

The main purpose of this paper is to design a distributed
continuous-time algorithm for solving the linear matrix equa-
tion

∑r
i=1AiXBi =

∑r
i=1 Ci, in a distributed way over

a multi-agent network. Considering that the computation of
a least squares solution can be related to an optimization
problem, we also take a distributed optimization perspective

to investigate the solution for this linear matrix equation
over a multi-agent network. Then we propose a distributed
continuous-time algorithm and analyze its convergence with
help of some control techniques such as Lyapunov ap-
proaches and semi-stability [15].

The contributions of this paper are summarized as follows.
• For a distributed design to solve the linear matrix

equation of the form
∑r

i=1AiXBi =
∑r

i=1 Ci, we
propose a distributed computation where each agent i
just needs to know Ai, Bi, Ci, communicates with its
neighbors, and finally reaches the estimates consensus.

• By using a distributed constrained optimization re-
formulation, we propose a distributed continuous-time
algorithm for the linear matrix equation, specifically, by
using augmented Lagrangian functions. The proposed
algorithm is able to find a least squares solution to the
linear matrix equation for any initial condition under
mild assumptions.

• For the distributed algorithm proposed, we provide
a rigorous proof for the correctness and convergence
of the algorithm to a least squares solution based
on saddle-point dynamics of Lagrangian functions and
semi-stability theory with mild conditions.

II. PRELIMINARIES AND FORMULATION

We first introduce some notations. Let R,Rn,Rm×n de-
note the set of numbers, the set of n−dimensional real col-
umn vectors, and the set of m×n real matrices, respectively.
Write 1n for a vector in Rn with all its components equal
to 1, In for the n × n identity matrix, and 0n(0m×n) for
the n−dimensional column vector (m × n matrix) with all
elements of 0. For M ∈ Rm×n, we denote MT , image(M )
and ker(M) as the transpose, the image, and the kernel of the
matrix M, respectively. Let ⊗ denote the Kronecker product;
let col {M1, . . . ,Mn} denote a column stack of matrices
Mi, i = 1, . . . , n, which is [MT

1 , . . . ,M
T
n ]T . Additionally,

denote ||·|| as the Euclidean norm, and ||·||F as the Frobenius
norm of matrices, 〈·, ·〉F as the Frobenius inner product of
real matrices.

Then we introduce some concept of graph theory. An
undirected graph G(V, E , A), where V = {1, . . . , r} is the set
of nodes, E ⊂ V ×V is the set of edges, A = [ai,j ] ∈ Rn×n

is the adjacency matrix such that ai,j = aj,i > 0 if (i, j) ∈ E
and ai,j = 0 otherwise. The Laplacian matrix Ln = D−A,
where D ∈ Rn×n is diagonal with Di,i =

∑n
i=1 ai,j . It

is known that, if the undirected graph G is connected, then
Ln = LT

n ≥ 0, rank(Ln) = n − 1 and ker(Ln) = {k1n :
k ∈ R} [16].
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Then we use the definition of semi-stability given in [15].
Consider a dynamical system

ẋ(t) = φ(x(t)), x(0) = x0, t ≥ 0, (1)

where φ : Rd → Rd is Lipschitz continuous. Given a
trajectory of (1) x(t) : [0,∞) → Rd. The point z ∈ Rd

is a limit point of a solution t → x(t) if there exists a
positive increasing divergent sequence {ti}∞i=1 ⊂ R such
that z = limi→∞ x(ti). We denote the set of all positive
limit points by Ω(x). A set M is positively invariant with
respect to (1) if, for every x0 ∈M,M contains the solution
x(t) of (1) for all t ≥ 0 with initial condition x0.

The following result is a special case of [15, Theorem
3.1].

Lemma 2.1: Let D be an open positively invariant set
with respect to (1) and let V : D → R be a continuously
differentiable function, and x(·) be a solution of (1) with
x(0) ∈ D. Assume V̇ (x(t)) ≤ 0,∀x ∈ D and define
Z = {x ∈ D : V̇ (x) = 0}. If every point in the largest
invariant subsetM of Z̄∩D is a Lyapunov stable equilibrium
point, where Z̄ is the closure of Z , then (1) is semi-stable
with respect to D.

It is time to formulate our problem. Consider the linear
matrix equation of the form

r∑
i=1

AiXBi =

r∑
i=1

Ci, (2)

where Ai ∈ Rn×p, Bi ∈ Rq×m, Ci ∈ Rn×m for all
i ∈ {1, . . . , r} are known matrices, and X ∈ Rp×q is an
unknown matrix to be solved. Actually, the equation (2) may
not have an exact solution X . When the solution of equation
does not exist, we usually consider the minimum norm least
squares solution. Meanwhile, the least squares method can
work out the exact solution when it exists.

The least squares solution to (2) is defined as the solution
to the following optimization problem

min
X
||

r∑
i=1

(AiXBi − Ci)||2F . (3)

Consider the distributed computation of a least squares
solution to (2) over a multi-agent network described by an
undirected graph G, where matrices Ai, Bi, Ci are known by
the i-th agent, for all i ∈ {1, . . . , r}.

In a distributed way, we rewrite equation (3) as

min
X̄

||
r∑

i=1

(AiXiBi − Ci)||2F ,

s.t. Xi = Xj , ∀i, j ∈ {1, . . . , r}
(4)

where X̄ = col{X1, . . . , Xr} ∈ Rrp×q, Xi is the estimate
of the solution to (3) for the i-th agent, and all the agents’
estimates will reach consensus finally. In this sense, we
consider the following optimization problen:

min
(X̄,Ȳ )

1

2

r∑
i=1

||Yi||2F +
1

2

r∑
i=1

〈
r∑

j=1

ai,j(Yi − Yj), Yi〉F ,

s.t.

r∑
i=1

(AiXiBi − Ci) =

r∑
i=1

Yi,

Xi = Xj , ∀i, j ∈ {1, . . . , r}
(5)

where X̄ = col{X1, . . . , Xr} and Ȳ = col{Y1, . . . , Yr}.
In fact, the equality constraint

r∑
i=1

(AiXiBi − Ci) =

r∑
i=1

Yi (6)

is equivalent to

AiXiBi − Ci − Yi +

r∑
j=1

ai,j(Zi − Zj) = 0n×m, (7)

where ai,j is the (i, j)-th element of adjacency matrix of
G, which is undirected and connected. And because G is
undirected and connected,

Xi = Xj , ∀i, j ∈ {1, . . . , r}

is equivalent to

r∑
j=1

ai,j(Xi −Xj) = 0p×q, ∀i, j ∈ {1, . . . , r}.

Then we get the problem

min
(X̄,Ȳ ,Z̄)

1

2

r∑
i=1

||Yi||2F +
1

2

r∑
i=1

〈
r∑

j=1

ai,j(Yi − Yj), Yi〉F ,

s.t. AiXiBi − Ci − Yi +

r∑
j=1

ai,j(Zi − Zj) = 0n×m,

r∑
j=1

ai,j(Xi −Xj) = 0p×q, ∀i ∈ {1, . . . , r}.

(8)
where X̄ = col{X1, . . . , Xr}, Ȳ = col{Y1, . . . , Yr} and
Z̄ = col{Z1, . . . , Zr}.

III. MAIN RESULT

By the KKT optimality condition, (X̄∗, Ȳ ∗, Z̄∗) is a
solution to problem (8) if and only if

AiX
∗
i Bi − Ci − Y ∗i +

r∑
j=1

ai,j(Z
∗
i − Z∗j ) = 0n×m,

r∑
j=1

ai,j(X
∗
i −X∗j ) = 0p×q, ∀i, j ∈ {1, . . . , r}

(9)
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and there are matrices Λ1∗
i ∈ Rp×q, Λ2∗

i ∈ Rn×m, such that

0p×q = −AT
i Λ2∗

i B
T
i −

r∑
j=1

ai,j(Λ
1∗
i − Λ1∗

j ),

0n×m = −Y ∗i −
r∑

j=1

ai,j(Y
∗
i − Y ∗j ) + Λ2∗

i ,

0n×m = −
r∑

j=1

ai,j(Λ
2∗
i − Λ2∗

j ).

(10)

Here we focus on problem (8), and propose a distributed
algorithm of agent i as

Ẋi(t) =−AT
i Λ2

i (t)BT
i −

r∑
j=1

ai,j(Λ
1
i (t)− Λ1

j (t))

−
r∑

j=1

ai,j(Xi(t)−Xj(t)), Xi(0) = Xi0 ∈ Rp×q,

Ẏi(t) =− Yi(t) + Λ2
i (t)−

r∑
j=1

ai,j(Yi(t)− Yj(t)),

Yi(0) = Yi0 ∈ Rn×m,

Żi(t) =−
r∑

j=1

ai,j(Λ
2
i (t)− Λ2

j (t)), Zi(0) = Zi0 ∈ Rn×m,

Λ̇1
i (t) =

r∑
j=1

ai,j(Xi(t)−Xj(t)),Λ
1
i (0) = Λ1

i0 ∈ Rp×q,

Λ̇2
i (t) =AiXi(t)Bi − Ci − Yi(t) +

r∑
j=1

ai,j(Zi(t)

− Zj(t))−
r∑

j=1

ai,j(Λ
2
i (t)− Λ2

j (t)),

Λ2
i (0) = Λ2

i0 ∈ Rn×m.
(11)

Xi(t), Yi(t) and Zi(t) are the estimates of solutions to
problem (8) by agent i at time t, and Λ1

i (t) and Λ2
i (t) are

the estimates of Lagrangian multipliers for the constraints in
(8) by agent i at time t.

Remark 3.1: Algorithm (11) is a primal-dual algorithm,
whose primal variables are Xi, Yi and Zi, and dual variables
are Λ1

i and Λ2
i .

Remark 3.2: Algorithm (11) can be viewed as the saddle-
point dynamics of the augmented Lagrangian function L.
That is

Ẋi = −∇Xi
L, Ẏi = −∇Yi

L, Żi = −∇Zi
L,

Λ̇1
i = ∇Λ1

i
L, Λ̇2

i = ∇Λ2
i
L, ∀i ∈ {1, . . . , r}.

Lemma 3.1: Suppose that G is connected and undi-
rected. (X̄∗, Ȳ ∗, Z̄∗) is a solution of problem (8) if and
only if there exist Λk∗ ∈ Rrn×m, k = 1, 2 such that
(X̄∗, Ȳ ∗, Z̄∗,Λ1∗,Λ2∗) is an equilibrium of algorithm (11).

The proof can be obtained following the KKT optimality
condition, which is omitted here.

The following shows the convergence of algorithm (11).
Theorem 3.1: If the undirected graph G is connected, then

1) every equilibrium of algorithm (11) is Lyapunov stable
and its trajectory is bounded for any initial condition;

2) the trajectory (X̄(t), Ȳ (t), Z̄(t),Λ1(t),Λ2(t)) con-
verges to an equilibrium of (11);

3) limt→∞Xi(t), for all i ∈ {1, . . . , r} is a least
squares solution to problem (2). In addition, if
limt→∞

∑
i ||Yi||2F = 0, limt→∞Xi(t) is an exact

solution to problem (2).
In this extended abstract, the proof is omitted here.
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