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Consider a passive scalar field advected by an unsteady Stokes flow on an open bounded
and connected domain Ω ⊂ Rd, where d = 2, 3, with a sufficiently smooth boundary
Γ. The scalar field is governed by the transport equation, where molecular diffusion is
assumed to be negligible and mixing is purely driven by advection. This naturally leads
to the study of optimal mixing via an active control of the flow velocity. As discussed
in our previous work [6], we consider the flow velocity induced by control inputs acting
tangentially on the boundary of the domain through the Navier slip boundary conditions.
This is motivated by the fact that moving walls accelerate mixing compared to fixed walls
(cf. [2, 3, 4, 13, 15]). We aim at designing an optimal Navier slip boundary control that
optimizes mixing at a given final time. The governing system of equations is

∂θ

∂t
+ v · ∇θ = 0, (0.1)

∂v

∂t
−∆v +∇p = 0, (0.2)

∇ · v = 0, x ∈ Ω, (0.3)

with Navier slip boundary conditions (cf. [12]),

v · n|Γ = 0 and kv + (T(v) · n)τ |Γ = g, (0.4)

and the initial condition is given by

(θ(0), v(0)) = (θ0, v0), (0.5)

where θ is the density, v is the velocity, p is the pressure, and g is the boundary control
input, which is employed to generate the velocity field for mixing. Navier slip boundary
conditions admit the fluid to slip with resistance on the boundary. Here n and τ denote the
outward unit normal and tangentially vectors with respect to the domain Ω, T(v) = 2D(v)
with D(v) = (1/2)(∇v+(∇v)T ), (T(v)·n)τ denotes the tangential component of (T(v)·n),
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and g · n|Γ = 0. The friction between the fluid and the wall is proportional to −v with
the positive coefficient of proportionality k.

Due to the divergence-free and no-penetration boundary conditions imposed on the
velocity field, it can be shown that any Lp-norm of θ is conserved (cf. [5, 6]), i.e.,

‖θ(t)‖Lp = ‖θ0‖Lp , t ≥ 0, p ∈ [0,∞]. (0.6)

To qualify mixing, the mix-norm and negative Sobolev norms H−s, for any s > 0, are
usually adopted, especially for the scalar field with no molecular diffusion, based on
ergodic theory (cf. [8, 9, 10, 11, 14]). The bridge that connects mixing with negative
Sobolev norms is the property of weak convergence. As discussed in our previous work,
we consider a general bounded domain for mixing and replace the negative Sobolev norm
by the norm for the dual space (Hs(Ω))′ of Hs(Ω) with s > 0. Also, we identify the space
(Hs(Ω))′, s > 0 as the domain of operator Λ−s equipped with the norm ‖ · ‖(Hs(Ω))′ , where
Λ is self-adjoint, positive and unbounded in L2(Ω). Thus, Λ2s ∈ L(Hs(Ω), (Hs(Ω))′). In
the rest of our discussion, we set s = 1.

Throughout this work, we use (·, ·) and 〈·, ·〉 for the L2-inner products in the interior
of the domain Ω and on the boundary Γ, respectively. The optimal control problem is
formulated as follows: For a given T > 0, find a control g minimizing the cost functional

J(g) =
1

2
‖θ(T )‖2

(H1(Ω))′ +
1

2
‖g‖2

Uad
, (P)

subject to (0.1)–(0.5), where ‖θ(T )‖(H1(Ω))′ = ‖Λ−1θ(T )‖L2(Ω) and Uad is the set of ad-
missible controls, which is often determined based on the physical properties as well as
the need to establish the well-posedness of the problem, i.e., the existence of an optimal
solution. In fact, the existence of an optimal solution to problem (P ) can be proven
for Uad = L2(0, T ;V 0

n (Γ)), where V 0
n (Γ) = {g ∈ L2(Γ) : g · n|Γ = 0}. The challenge

arises in deriving the first-order necessary conditions of optimality. To establish the well-
posedness of the Gâteaux derivative of θ, one needs supt∈[0,T ] ‖∇θ‖L2 <∞, which requires
θ0 ∈ H1(Ω) and the flow velocity to satisfy∫ T

0

‖∇v‖L∞(Ω) d <∞.

Therefore, the initial condition v0 and Uad were chosen in a way such that this estimate
holds [6]. To this purpose, the time regularity of g was needed. For computational
convenience, the first derivative ∂g/∂t was adopted rather than the lower order fractional
time derivative in the cost functional. Consequently, the optimality condition involved the
time derivative of g, and thus the optimality system became difficult to further analyze
the uniqueness of the solution.

0.1 An approximating control approach

In the current work, we start with investigating the approximating control problem by
adding a small diffusion term ε∆θ, for ε > 0, to the transport equation. The problem is
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now formulated as follows: For a given T > 0, find a control gε ∈ Uεad = L2(0, T ;V 0
n (Γ))

minimizing the cost functional

Jε(gε) =
1

2
‖θε(T )‖2

(H1(Ω))′ +
1

2
‖gε‖2

Uεad
, (Pε)

subject to an approximating system governed by

∂θε
∂t
− ε∆θε + vε · ∇θε = 0, (0.7)

∂vε
∂t
−∆vε +∇pε = 0, (0.8)

∇ · vε = 0, x ∈ Ω, (0.9)

with the Neumann boundary condition for the scalar

ε
∂θε
∂n
|Γ = 0 (0.10)

and the nonhomogenous Navier slip boundary conditions for the velocity

vε · n|Γ = 0 and (kvε + (T(vε) · n)τ )|Γ = gε. (0.11)

The initial condition is given by

(θε(0), vε(0)) = (θ0, v0). (0.12)

Note that due to one-way coupling, the flow velocity v does not depend on ε and thus we
have

vε = v. (0.13)

However, to distinguish the approximating system from the original one, we still adopt
the notation vε.

The outline of the rest of this work is as follows. We first recall the basic results on
Navier slip boundary control for Stokes problem. Then we establish the convergence of the
approximating system governed by (0.7)–(0.12) to the original one governed by (0.1)–(0.5).
Next we show the existence of an optimal solution to the approximating control problem
(Pε) and derive the first-order necessary conditions of optimality by using a variational
inequality. Moreover, we prove that the optimal solution (g∗ε , v

∗
ε , θ
∗
ε ) to problem (Pε)

strongly converges to (g∗, v∗, θ∗) as ε→ 0, which turns out to be the optimal solution to
the original problem (P ). Finally, we prove that (g∗, v∗, θ∗) is unique for d = 2 and γ
sufficiently large .
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