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I. INTRODUCTION

Multi-agent coordination has drawn much research in-
terests due to the fast development of large-scale sys-
tems/networks, and multiple high-order agents have been
widely discussed to deal with some practical coordination
problems. As one fundamental problem of this topic, leader-
following coordination has been widely studied [1]–[4]. In
this problem, a (virtual) leader is often set up to generate the
reference signals for each agent to follow, while this leader is
usually given as a known dynamic system with possible un-
known states. Then the main task is to determine the agents’
controllers, which should only utilize local information, such
that the resultant states or output trajectories of the agents
can track the reference signal generated by the leader.

In this paper, we follow this line but consider a special case
when the reference signal is not generated as the trajectory of
an autonomous leader, but as the unknown optimal solution
of distributed optimization problems. This type of problems
arises naturally from many practical applications. For exam-
ple, in a source seeking problem, we aim to control one or
more agents with nonlinear dynamics to seek the extremum
of some unknown signal field based on local signal mea-
surements. Thus the reference (although a constant) is neither
available in advance nor can be generated by an autonomous
leader without real-time measurements and computations.
Many other practical engineering applications have a similar
feature that the reference signal is a (time-varying) maximum
or minimum of some performance function, e.g., the design
of anti-lock braking systems [5], optimal rendezvous of
unmanned aerial vehicles [6], (optimal) frequency regulation
in power grids [7].

II. PROBLEM FORMULATION

Consider a collection of agents of the form

ẋi = Aixi +Biui

yi =Cixi +Diui, i = 1, . . . , N,
(1)

where x ∈ Rni , ui ∈ R and yi ∈ R are state, input and output
variables, respectively. Constant matrices Ai,Bi,Ci are with
proper dimensions and the triple (Ci, Ai, Bi) is stabilizable
and detectable.

Each agent has a local cost function fi : R→ R, which
is twice continuously differentiable with bounded Hessian,
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i.e., there exist finite positive constants hi, h̄i satisfying hi ≤
∇2 fi(s) ≤ h̄i for all s ∈ R. For a distributed design, the
communication topology among agents is described by a
weighted undirected graph G , and agent i has its own
local cost function fi(·), which is only known to itself and
cannot be shared globally in the multi-agent network. Denote
y = col(y1, . . . , yN), and we associate these agents with the
following contained optimization problem:

minimize f (y) = ∑
N
i=1 fi(yi)

subject to ∑
N
i=1 yi = ∑

N
i=1 di

(2)

where di is a constant. As usual, we assume there exists a
finite optimal solution y∗ = col(y∗1, . . . , y∗N) to (2).

The optimal steady-state regulation problem is formulated
as follows. Given a graph G , agent (1), and the optimization
problem (2), find a distributed control for ui such that each
agent reaches a steady-state with an associated output y∗i ,
Cix∗i by only its own local data and exchanged information
with its neighbors, i.e., limt→+∞ yi = y∗i for i = 1, . . . , N.

Several technical assumptions are made to achieve a
cooperation for solving this problem.

Assumption 1: The information sharing graph G is undi-
rected and connected.

Assumption 2: For each i = 1, . . . , N, there exist constant
matrices Xi1, Xi2, and Ui satisfying

0 = AiXi +BiUi

1 =CiXi +DiUi.
The formulated problem is essentially an asymptotic reg-
ulation problem where the reference is determined by the
optimization problem (2). Hence the above condition known
as regulator equations is crucial in our design.

III. MAIN RESULTS

The most challenging part to solve this problem is the
high-order structure of agents including its coupling with
the distributed optimization requirements. To avoid this dif-
ficulty, we employ the embedded scheme proposed in [8] and
solve the distributed optimal steady-state regulation problem.

Briefly, we first introduce an optimal signal generator
by considering the same optimization problem for “virtual”
single integrators, in order to asymptotically reproduce the
optimal solution y∗ by a signal zi. Then, by taking zi as
an output reference signal for the high-order agents and
embedding this generator in the feedback loop via a steady-
state regulator for system (1). In this way, the optimal
steady-state regulation problem is divided into two simpler
subproblems: a) conventional distributed optimization design
and b) asymptotic regulation for general linear agents.
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A. Optimal signal generator

A optimal signal generator is essentially a dynamic system
reproducing the optimal solution of (2) (for single integra-
tors). For this part, we propose the following system:

żi =−∇ fi(zi)+λi

λ̇i =−λ
v
i −wv

i +di− zi

ẇi = λ
v
i

(3)

where λ v
i , ∑

N
j=1 ai j(λi−λ j), wv

i , ∑
N
j=1 ai j(wi−w j).

Its effectiveness is presented as follows.
Lemma 1: Suppose Assumption 1 hold. The algorithm (3)

will exponentially solve the optimization problem (2), i.e., zi
converges to y∗i exponentially fast as t→+∞ for i= 1, . . . , m.

B. Steady-state regulator

With the above optimal signal generator, we seek a proper
steady-state regulator and then embed it into this regulator to
solve the distributed optimal steady-state regulation problem.

By the stabilizability of (Ai,Bi), there exists a matrix Ki1
such that Ai+BiKi1 is Hurwitz. Denote Ki2 ,Ui−Ki1Xi. The
first main theorem of this paper as follows.

Theorem 1: Suppose Assumptions 1-2 hold. The follow-
ing algorithm solves the optimal steady-state regulation prob-
lem for this linear multi-agent system:

ui = Ki1xi +Ki2zi

żi =−∇ fi(zi)+λi

λ̇i =−λ
v
i −wv

i +di− zi

ẇi = λ
v
i .

(4)

Furthermore, yi exponentially converges to y∗i as t→ ∞.
Next, let us consider the case when only the output

variables of each agent can be obtained because it may be
difficult to get or measure all the state variables in some sit-
uations. Since the optimal signal generator is independently
implemented, we only have to focus on the tracking part.

To solve the problem, we consider an output feedback
version of the proposed embedded control by attaching a
Luenberger observer. Take gain matrices Li such that Ai +
LiCi is Hurwitz (i = 1, . . . , N), then we have the following
theorem.

Theorem 2: Suppose Assumptions 1-2 hold. The follow-
ing algorithms solve the optimal steady-state regulation prob-
lem for this linear multi-agent system:

ui = Ki1ξi +Ki2zi

ξ̇i = Aiξi +Biui +Li(Ciξi− yi)

żi =−∇ fi(zi)+λi

λ̇i =−λ
v
i −wv

i +di− zi

ẇi = λ
v
i .

(5)

Furthermore, yi exponentially converges to y∗i as t→ ∞.

C. Extensions with real-time gradients

In some cases, we can not have the cost function fi itself
and only its real-time gradient is available. Then, the above
control law will not be implementable. Note that there will
always be some error between ∇ fi(yi) and ∇ fi(zi) when zi 6=
yi, and this error will be smaller if the tracking subsystem
evolves in a faster time scale. Thus, we use some high-gain
technique to solve this problem.

We only present the state feedback results.
Theorem 3: Suppose Assumptions 1-2 hold and the sys-

tem (1) is minimum-phase with relative degree ri for i =
1, . . . , N. There exists a constant ε∗ > 0, such that the
following algorithm solves the distributed optimal steady-
state regulation problem for this linear multi-agent system
with real-time gradients when ε ∈ (0, ε∗):

ui =−
1

εri
[ci0(yi− zi)+

ri−1

∑
k=1

ε
kcikCiAk

i xi]−
CiA

ri
i

CiA
ri−1
i Bi

xi

żi =−∇ fi(yi)+λi (6)

λ̇i =−λ
v
i −wv

i +di− zi

ẇi = λ
v
i

where the parameters cik are chosen such that the polynomial
∑

ri−1
k=0 ciksk + sri is Hurwitz (i = 1, . . . , N).
The distributed optimal steady-state regulation problem

allows us to take both distributed optimization and steady-
state regulation of high-order plants into consideration. In
fact, the formulated problem extended the well-studied re-
source allocation problem to high-order multi-agent systems
[9], [10]. When N = 1, the formulated problem can be
taken as an asymptotic regulation problem, where the steady
state optimizes a given objective function. This problem has
been called optimalizing control or extremum seeking in
some literature [5], [11], [12]. Thus, we actually consider
its distributed extensions with gradient information for high-
order unstable plants.

Based on the above analysis, it is worthwhile to mention
that the embedded control scheme provides a general and
promising formulation to solve these problems in a unified
way. In fact, the design complexities brought by high-order
dynamics are decoupled from the optimization task. By solv-
ing the two simpler subproblems, the optimal output consen-
sus problem can be solved via constructive controllers. Also,
this embedded control framework enjoys a large flexibility in
choosing optimal signal generators and tracking controllers,
and therefore, admits various optimization algorithms.

IV. CONCLUSIONS

This paper has investigated the optimal steady-state reg-
ulation problem for general linear multi-agent systems. An
embedded control scheme has been proposed and applied to
solve this problem based on the introduction of an optimal
signal generator. The proposed algorithms have been proved
to converge to the optimal solution exponentially with dif-
ferent information. In fact, many challenging optimal output
consensus problems remain to be done, including the cases
with nonlinear agents and various uncertainties.
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