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Abstract— In this paper, we analyze a class of processive
phosphorylation futile cycles in which a given protein substrate
is modified by more than two enzymes. This analysis is based on
the assumption that the initial concentration of the protein sub-
strate is much higher than the concentrations of the enzymes.
This assumption allows us to reduce the dynamics of the system
to its Michaelis Menten approximation using the steady state
approach. We then prove that for the given system of equations,
there exists a unique equilibrium concentration vector in every
positive stoichiometric compatibility class. We further prove
that this unique equilibrium is globally asymptotically stable
using two different Lyapunov functions. The first Lyapunov
function is a piecewise linear in rates (PWLR) Lyapunov
function. The construction of the second Lyapunov function
is based on the property of strict convexity of the exponential
function.
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I. INTRODUCTION

In this paper, we consider a chemical reaction network of
the following type.

P0 + E1 
 C11 
 C12 
 · · · · · ·
 C1m1
−→ P1 + E1

P1 + E2 
 C21 
 C22 
 · · · · · ·
 C2m2 −→ P2 + E2

...
...

...

Pn−1 +En 
 Cn1 
 Cn2 
 · · · · · ·
 Cnmn
−→ P0 +En

(1)
With regards to the above network, Pi−1 denotes a substrate
protein and Ei denotes an enzyme modifying Pi−1 to Pi in
the ith reaction chain of the network. Ci1, Ci2, . . ., Cimi

are
intermediate complexes that are involved in the modification
of the protein substrate Pi−1 to Pi in the ith reaction chain.
Since in every reaction chain, the enzyme catalyzing the
modification of the corresponding protein substrate is neither
produced nor consumed, and the protein substrate consumed
in one reaction chain is produced in equal amounts in another
reaction chain, the reaction network (1) is a futile cycle.

With n = 2, i.e., with only two reaction chains, the
network (1) denotes the model of a multisite phosphorylation
futile cycle as studied in [1], in which the first reaction
chain models the phosphorylation of P0 to P1 under a
processive mechanism and the second reaction chain models
the dephosphorylation of P1 back to P0 also under a pro-
cessive mechanism. Multisite phosphorylation systems are
intracellular futile cycles in which one enzyme catalyzes the
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attachment of phosphate groups onto a protein at multiple
sites and another enzyme detaches the phosphate groups
from the protein. Such futile cycles play a vital role in
biological processes like cellular signalling and cell cycle
control and consequently their dynamical properties are of
great interest. For a detailed exposition on phosphorylation
systems and their mechanisms, the reader is referred to [2].
The mechanism (1) presented in this paper is a generalization
of the processive phosphorylation model studied in [1],
in which the phosphorylation and dephosphorylation of a
protein substrate is carried out by more than two enzymes.

In addition to processive mechanism of phosphorylation
and dephosphorylation, there exists another popular mecha-
nism, which is called distributive mechanism whose dynam-
ics have been studied extensively in [3]–[8]. The dynamics
of processive futile cycles have also been studied extensively
in [1], [9], [10].

In [9], under the assumption that each reaction is governed
by the law of mass action kinetics, the futile cycle (1)
was analyzed for equlibria and stability and it was proved
that corresponding to a given set of nonnegative initial
concentrations, there exists a unique positive equilibrium
concentration vector to which the dynamics of the system
globally asymptotically converges. In this paper, we consider
a Michaelis Menten approximation of the futile cycle (1)
and show similar results for the approximate model. The
Michaelis-Menten approximation of the mechanism is de-
rived under the assumption that the concentrations of the
substrate and phosphorylated proteins are much higher than
those of the enzymes. In order to derive the Michaelis
Menten approximation of the network (1), we make use of
the King Altman approach [11]–[13] and the steady state
approach [14]. We show using intermediate value property
of continuous functions that the Michaelis Menten approxi-
mation of (1) admits a unique equilibrium corresponding to
a given total concentration of the substrate and its phospho-
rylated forms.

The main contribution of the paper is the construction
of two different Lyapunov functions to prove stability of
the unique positive equilibrium concentration vector cor-
responding to a given total substrate concentration, of the
Michaelis Menten approximation of the network (1). The
first Lyapunov function is a PieceWise Linear in Rates
(PWLR) Lyapunov function very similar to the one used
to prove global asymptotic stability of the network (1) in
[9]. The construction of piecewise linear Lyapunov functions
in order to prove stability of systems, specially chemi-
cal reaction networks, is not uncommon in the literature.
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Recently, Lyapunov functions that are piecewise linear in
reaction rates have been used to prove stability of chemical
reaction networks in [15], [16]. A piecewise linear Lyapunov
function in the time-derivative of the states was also used to
prove stability of nonlinear compartmental systems in [17],
[18]. The second Lyapunov function used in this paper is
an alternative Lyapunov function that can also be used to
prove global stability in our case. The construction of this
Lyapunov function is based on the strict convexity of the
exponential function.

The paper is organized as follows. In Section II, we derive
the Michaelis Menten approximation model of the chemical
reaction network (1) using the steady state approach. In
this section, we also prove nonnegativity and boundedness
of the solution trajectories of the approximate model. In
Section III, we prove that for the approximate model, there
exists a unique positive equilibrium concentration vector
corresponding to a given total substrate concentration. We
then prove the global asymptotic stability of this equilibrium
concentration vector using two different Lyapunov functions
in Section IV. In Section V, we present the conclusions of
the paper.

II. MICHAELIS MENTEN APPROXIMATION
USING THE STEADY STATE APPROACH

In order to derive the Michaelis Menten approximation
of the network (1), we begin with the assumption that each
reaction in the network (1) is governed by the law of mass
action kinetics which is the most common rate governing law
of chemical reactions. According to this law, the rate of a
reaction is proportional to the concentrations of the different
species on the substrate side of the reaction. We now describe
this law with the help of an example. Consider the reaction

X1 +X2

kf


kr
X3 (2)

In the reaction above, kf and kr are positive constants known
as the forward and the reverse rate constants. Let xi denote
the concentration of Xi for i = 1, 2, 3. The mass action
reaction rate of the forward reaction is kfx1x2, and the rate
of the reverse reaction is krx3. Therefore the overall reaction
rate in the forward direction of the reversible reaction (2) is
r = kfx1x2 − krx3. In this case, the rates of change of
concentrations of the different species of the reaction are
given by

ẋ1 = ẋ2 = −ẋ3 = −r

where ẋ := dx
dt .

Now consider the ith reaction chain of the network (1)
where i ∈ {1, . . . , n}. Assuming that each reaction in this
reaction chain is governed by mass action kinetics, and
defining Pn := P0, take the (positive) reaction constants of
the different reactions in the chain as shown below.

Pi−1 + Ei
ki1


k−i1

Ci1
ki2


k−i2

· · · · · ·
kimi



k−imi

Cimi

ki(mi+1)−→ Pi + Ei

Let pi, ei and cij denote the concentrations of Pi, Ei and
Cij respectively. For i = 1, . . . , n, define

ri := ki(mi+1)cimi
; qi := ki1pi−1ei − k−i1ci1. (3)

Then, we have the rate equations

ṗi = ri − qi+1 (4)

for i = 1, . . . , n− 1 and

ṗ0 = rn − q1 (5)

We now derive the Michaelis-Menten approximation for the
network (1). Note that this can be done using singular
perturbation theory as was done for the case of a distributive
2-site phosphorylation system known as a dual futile cycle
in [6], [19]. In this paper, instead we make use of a
combination of the King-Altman approach [11], [13] and the
steady-state approach [14]. First of all, in order to derive
the Michaelis-Menten approximation of any enzyme-kinetic
reaction mechanism, it is assumed that the concentration of
the substrates are much higher than those of the enzymes
and their complexes. Under these conditions, the reactions
between the enzymes and their complexes (Ei, Cij) occur at
a much faster time-scale than those involving the substrates
and products (Pi).

The first step in King Altman approach is to consider
the reactions occuring in the faster time-scale, i.e., those
reactions that involve the enzymes and their complexes.
Since these reactions occur rapidly compared with those that
involve the substrates and products, the concentrations of
substrates and products are assumed constants while deriving
the rate equations of these reactions. Consider now the faster
time-scale reactions in the ith reaction chain of (1) where
i ∈ {1, 2, . . . , n}.

Ei
ki1pi−1



k−i1

Ci1
ki2


k−i2

· · · · · ·
kimi



k−imi

Cimi

ki(mi+1)−→ Ei

When a steady state of the above network is reached, we
have

ki1pi−1ei − k−i1ci1 = ki2ci1 − k−i2ci2 = · · · · · · =

kimi
ci(mi−1) − k−imi

cimi
= ki(mi+1)cimi

(6)

For j = 1, . . . ,mi, we prove by induction that there exists
a δij ∈ R+, such that

cij = δijcimi
. (7)

Note that δimi
= 1 > 0. Assume that ci(j+1) = δi(j+1)cimi

with δi(j+1) > 0 and j ≤ mi − 1. Then from equations (6),
it follows that

ki(j+1)cij − k−i(j+1)ci(j+1) = ki(mi+1)cimi
.

This implies that

cij =
1

ki(j+1)
(ki(mi+1) + k−i(j+1)δi(j+1))cimi = δijcimi
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where

δij :=
1

ki(j+1)
(ki(mi+1) + k−i(j+1)δi(j+1)).

It follows that δij > 0 if δi(j+1) > 0. Since δimi
> 0, by

induction, we obtain δij > 0 for i = 1, 2, . . . ,mi − 1.
From equations (6), it also follows that ri = qi, i.e.,

ki1pi−1ei − k−i1ci1 = ki(mi+1)cimi .

This implies that

pi−1ei =
1

ki1
(ki(mi+1) + k−i1δi1)cimi

= δi0cimi
(8)

where
δi0 :=

1

ki1
(ki(mi+1) + k−i1δi1) > 0.

We have from equation (8),

cimi
=
pi−1
δi0

ei (9)

Observe that with respect to the ith reaction chain, we have

ėi +

mi∑
j=1

ċij = 0

due to which we have the conservation relation

ei +

mi∑
j=1

cij = eit (10)

where eit is a constant that depends on i. Now substituting
equations (7) and (9) in the conservation relation (10), we
get

ei =
et

1 + aipi−1
, (11)

where

ai :=

∑mi

j=1 δij

δi0
. (12)

Substituting equations (9), (11) and (12) in (3), we get

ri =
viaipi−1

1 + aipi−1
(13)

where
vi :=

ki(mi+1)eit∑mi

j=1 δij

Since ri = qi for i = 1, . . . , n, equations (4) and (5) may
be rewritten in the following way to obtain the Michaelis
Menten approximation model for the network (1)

ṗi = ri − ri+1

for i = 1, . . . , n− 1 and

ṗ0 = rn − r1.

This set of equations may be written in matrix form as fol-
lows using the expressions for ri(i = 1, . . . , n) in equation
(13).

d

dt


p0
p1
...

pn−1

 =


−1 0 · · · 1
1 −1 · · · 0
...

...
. . .

...
0 0 · · · −1




v1a1p0
1+a1p0
v2a2p1
1+a2p1

...
vnanpn−1

1+anpn−1

 (14)

Define

p :=


p0
p1
...

pn−1

 ; N :=


−1 0 · · · 1
1 −1 · · · 0
...

...
. . .

...
0 0 · · · −1

 ; r :=


r1
r2
...
rn


(15)

Then equation (14) may be rewritten as

ṗ = Nr. (16)

This equation corresponds to the scheme of reactions shown
below

P0
1−→ P1

2−→ P2 · · · · · · · · ·Pn−1
n−→ P0 (17)

With regards to the above scheme, ri denotes the rate of the
reaction i for i = 1, . . . , n. Note that for i = 1, . . . , n, ai is
the reciprocal of the Michaelis constant associated with the
substrate Pi−1 of reaction i. Note also that vi is the maximum
possible rate of reaction i (at infinite substrate concentration
pi−1) in scheme (17).

Let Rn+ denote the set of n-dimensional vectors with
positive real elements. Let pin denote the vector of initial
substrate concentrations, i.e., pin = p(0). Assume that each
component of pin is nonnegative. Then it is easy to see from
equation (16) that

p− pin ∈ im(N)

The space of concentrations

Spin := {p ∈ Rn+ | p− pin ∈ im(N)}

is the positive stoichiometric compatibility class correspond-
ing to pin as defined in [20]–[22]. Spin is the space of substrate
concentration vector p with positive components that can be
reached if the initial concentration vector is equal to pin.

It is easy to see that ker
(
N>

)
= Im

(
1n
)
, where 1n

denotes a vector of dimension n, each of whose entries is
equal to 1. We therefore have 1>n

(
dp
dt

)
= 0, i.e.,

n−1∑
i=0

ṗi = 0

due to which we have the only conservation relation corre-
sponding to (16) given by

n−1∑
i=0

pi = pt (18)

where pt is a constant, i.e., the total substrate concentration
is conserved. Notice that the vector p stays in Spin as long
as p ∈ Rn+ and 1>n p = pt.

We now prove nonnegativity of system (14), i.e., we prove
that the nonnegative orthant is invariant with respect to the
system of equations (14). This will enable us to prove the
boundedness of the system trajectories in the corollary that
follows the Lemma below.

Lemma 1: Consider the dynamical system described by
equations (14) with ai, vi > 0 for i = 1, . . . , n. If the initial
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values of p0, p1, . . . , pn−1 are nonnegative, then they remain
nonnegative at all future times.

Proof: If we assume that at any particular instant of
time, any one of p0, p1, . . . , pn−1 has value zero, and the rest
are nonnegative, then from the dynamical equations (14), it
follows that the rate of change of the variable with value zero,
is either positive or zero. This proves that the nonnegative
orthant is invariant with respect to the differential equations
(14), since any point on the boundary of the nonnegative
orthant will either be pushed into the positive orthant or will
stay in the boundary. In other words, if the initial values of
p0, p1, . . . , pn−1 are nonnegative, they remain nonnegative at
all future times.

Corollary 2: Consider the system of equations (14) with
ai, vi > 0 for i = 1, . . . , n. Define pt as in (18). If pi(0) ≥ 0
for i = 1, . . . , n−1, then the solution trajectories of (14) are
bounded with 0 ≤ pi(t) ≤ pt for i ∈ {0, 1, . . . , n − 1} and
t ≥ 0.

Proof: The statement follows from Lemma 1 and the
conservation relation (18).

III. UNIQUENESS OF EQUILIBRIUM

In this section, we prove that system (14) admits a unique
positive equilibrium for a given positive total substrate con-
centration pt.

Theorem 3: With regards to the system (14), let pt be
defined by equation (18). Assume that ai, vi > 0 for
i = 1, . . . , n. Then corresponding to a given positive value
of pt, the system (14) has a unique positive equilibrium
concentration vector.

Proof: For i = 0, . . . , n − 1, let p∗i denote the
concentration of pi at an equilibrium. For i = 1, . . . , n define
ri as in equation (13). Let s denote the index for which vs
is minimum among the elements of {v1, v2, . . . , vn}. From
equation (14), it is easy to see that an equilibrium point
occurs when ri = ri+1 for i = 1, . . . , n−1. We will use this
fact to parametrize p∗i in terms of p∗s−1 for i = 0, 1, . . . , n−1.
Notice that ri = rs at an equilibrium point implies that

viaip
∗
i−1

1 + aip∗i−1
=

vsasp
∗
s−1

1 + asp∗s−1

which in turn implies that

p∗i−1 =
bip
∗
s−1

1 + αip∗s−1
(19)

where bi := vsas
viai

and αi := as(1 − vs
vi

) ≥ 0. Using
conservation relation (18), we get

n∑
i=1

p∗i−1 = pt (20)

which implies that
n∑
i=1

bip
∗
s−1

1 + αip∗s−1
− pt = 0 (21)

We prove that there exists a unique p∗s−1 ∈ (0, pt) that
satisfies the above equation. Define

f(x) :=

n∑
i=1

bix

1 + αix
− pt

Since bs = 1 and αs = 0,

f(pt) = bspt+

n∑
i=1,i6=s

bipt
1 + αipt

−pt =

n∑
i=1,i6=s

bipt
1 + αipt

> 0

Observe that f(0) = −pt < 0. Since f(x) is a continuous
function for x ≥ 0, by intermediate value property, it follows
that f has at least one root in the open interval (0, pt). Now
observe that

f ′(x) =

n∑
i=1

bi

(1 + αix)
2 > 0 ∀ x.

Since f is monotonously increasing, f has precisely one root
in the open interval (0, pt). This implies that the value of
p∗s−1 that satisfies equation (21) is unique and positive. From
equation (19) it follows that for a given positive value of
pt, p∗i−1 is unique and positive for i = 1, . . . , n. From the
conservation relation (20), it follows that p∗i ∈ (0, pt) for
i = 0, . . . , n− 1. This concludes the proof.

From Theorem 3, it follows that there is a unique equi-
librium in every positive stoichiometric compatibility class
Spin corresponding to a nonnegative, nonzero initial substrate
concentration vector pin.

IV. GLOBAL ASYMPTOTIC STABILITY

In this section we prove the unique equilibrium con-
centration vector of the system (14) corresponding to a
given positive total substrate concentration pt is globally
asymptotically stable. As mentioned in the introduction, we
prove this using two different Lyapunov functions.

Theorem 4: Consider the system of equations (14) with
ai, vi > 0 for i = 1, . . . , n. Define pt as in (18) and assume
that pt > 0. If pi(0) ≥ 0 for i = 1, . . . , n − 1, then the
solution trajectories of (14) converge to the unique positive
equilibrium corresponding to the value of pt.

Remark 5: In the following we give two proofs of the
above theorem based on two different Lyapunov functions.
The first proof is based on the construction of a PieceWise
Linear in Rates (PWLR) Lyapunov function coupled with
the use of LaSalle’s invariance principle [23], [24, Section
4.2], [25, pp. 188-189]. The construction of the Lyapunov
function in the second proof is based on the strict convexity
of the exponential function.

Proof: For i = 1, . . . , n, define ri as in equation (13).
Define p, N and r as in equation (15). Let p∗ denote the
unique equilibrium concentration vector corresponding to pt.
Thus

p∗ =


p∗0
p∗1
...

p∗n−1


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Proof 1: Define the PWLR Lyapunov function

V (r) = ‖r‖∞ = max
1≤j≤n

rj

It is easy to see that V is a piecewise linear function of the
components of r. Observe that V (r) is continuous in time,
since each component of r is continuous in time. Let

V (r) = ri =
viaipi−1

1 + aipi−1
. (22)

Define r0 := rn. Differentiating (22) with respect to time,
we get

d

dt
V (r) =

∂ri
∂pi−1

· dpi−1
dt

=
viai(ri−1 − ri)
(1 + aipi−1)

2 ≤ 0

since ri = ‖r‖∞. Let E denote the set of all vectors r for
which d

dtV (r) = 0. We prove that any r ∈ E that is positively
invariant satisfies r ∈ span(1n) where as before, 1n denotes
a vector of dimension n that has every entry equal to 1.
Observe that [ ddtV (r) = 0] =⇒ [ri−1 = ri]. For invariance,
we need to have

dri−1
dt

=
dri
dt

= 0.

This implies that ri−2 = ri−1 = ri if i 6= 1 and rn−1 =
rn = r1 if i = 1. Thus by induction, it follows that for
invariance, we need to have

r1 = r2 = · · · = rn

which corresponds to the equilibrium concentration vector
p∗. It follows that the only vector r ∈ E that is positively
invariant corresponds to the unique equilibrium concentration
vector p∗. Since d

dtV (r) ≤ 0 and r is a continuous function
of the concentration vector p, by LaSalle’s invariance princi-
ple, it follows that all solution trajectories of (14) converge
to p∗.

Proof 2: We have

r1 = r2 = · · · = rn =: ρ(say)

when p = p∗, i.e., at the positive equilibrium corresponding
to pt. Define

G :=

n∑
i=1

pi−1 ln ri − pt ln ρ−
n∑
i=1

1

ai
ln

(
1 + aipi−1
1 + aip∗i−1

)
(23)

We now prove that G is a Lyapunov function for the system
(14), by proving the following

1) G ≥ 0 with equality holding only if p = p∗;

2)
dG

dt
≤ 0 with equality holding only if p = p∗.

Observe that the expression for G can be rewritten as follows

G =

n∑
i=1

pi−1 ln

(
ri
ρ

)
−

n∑
i=1

1

ai
ln

(
1
ai

+ pi−1
1
ai

+ p∗i−1

)

=

n∑
i=1

[
pi−1 ln

(
pi−1
p∗i−1

)
−
(
pi−1 +

1

ai

)
ln

(
1
ai

+ pi−1
1
ai

+ p∗i−1

)]
We now prove that

pi−1 ln

(
pi−1
p∗i−1

)
≥
(
pi−1 +

1

ai

)
ln

(
1
ai

+ pi−1
1
ai

+ p∗i−1

)
(24)

with equality holding only if pi−1 = p∗i−1. Define

y := (x+ `) ln

(
x+ `

x+ `∗

)
with ` and `∗ being constants. Then it can be verified that

dy

dx
= 1− z + ln z

where
z :=

x+ `

x+ `∗

From the strict concavity of the logarithmic function, we
have

dy

dx
= 1− z + ln z ≤ 0

with equality holding only if z = 1, i.e., if ` = `∗. This
implies that

` ln

(
`

`∗

)
≥ (x+ `) ln

(
x+ `

x+ `∗

)
for x > 0. Substituting ` = pi−1; `∗ = p∗i−1 and x = 1

ai
proves inequality (24) with equality holding only if pi−1 =
p∗i−1. This in turn implies that G ≥ 0 with equality holding
only if p = p∗.

We now prove that
dG

dt
≤ 0 with equality holding only if

p = p∗. Define

G∗ := pt ln ρ−
n∑
i=1

1

ai
ln(1 + aip

∗
i−1)

From equations (23) and (13), it follows that

G = −
n∑
i=1

(
pi−1 +

1

ai

)
ln(1 + aipi−1)

+

n∑
i=1

pi−1 ln(viaipi−1)−G∗

For some k ∈ {0, . . . , n− 1},

∂G

∂pk
= −

(
pk +

1

ak+1

)
ak+1

1 + ak+1pk
− ln(1 + ak+1pk)

+ ln(vk+1ak+1pk) + pk

(
1

pk

)
= ln

(
vk+1ak+1pk

1 + akpk

)
Thus for k ∈ {0, . . . , n− 1},

∂G

∂pk
= ln rk+1.
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Define Γ :=
[
ln r1 ln r2 · · · ln rn

]
. Now

dG

dt
=

n−1∑
i=0

∂G

∂pi
· dpi
dt

= Γ
dp

dt
= ΓNr (25)

For i = 1, . . . , n, define γi := ln ri. From equation (25), we
get

dG

dt
= (γ2 − γ1)eγ1 + (γ3 − γ2)eγ2 + · · ·

+ (γn − γn−1)eγn−1 + (γ1 − γn)eγn

From the strict convexity of the exponential function, we
have

(γi − γj)eγj ≤ eγi − eγj

for any γi, γj ∈ R, and the equality occurs only when γi =
γj . Hence

dG

dt
≤ eγ2−eγ1 +eγ3−eγ2 +· · ·+eγn−eγn−1 +eγ1−eγn = 0

From the above, it follows that dG
dt = 0, only when γ1 =

γ2 = · · · = γn. i.e., when r1 = r2 = · · · = rn, which
corresponds with the unique positive equilibrium p = p∗

associated with the total substrate concentration pt in our
case.

This implies that G is a Lyapunov function for the system
(14). Therefore, all solution trajectories of (14) converge to
the unique positive equilibrium corresponding to pt.

V. CONCLUSION

In this paper, we have derived the Michaelis Menten
approximation of a model of processive phosphorylation
futile cycle in which the phosphorylation and the subsequent
dephosphorylation of the substrate protein is carried out by
more than two enzymes. We have proved that the approx-
imate model admits a unique equilibrium in every positive
stoichiometric compatibility class using intermediate value
property of continuous functions. We have constructed two
different Lyapunov functions for the model in order to prove
the global asymptotic stability of the unique equilibrium in
every positive stoichiometric compatibility class. The first
one is a PWLR Lyapunov function which is very similar
to the one in [9] that has been used to prove global sta-
bility of the original mass action kinetics model (1). The
construction of the second Lyapunov function is based on
the strict convexity of the exponential function and is very
similar to the Lyapunov function used to prove stability of
complex balanced mass action kinetics chemical reaction
networks in [26]. It should be noted that the uniqueness and
global stability of the equilibrium of the approximate model
considered in this paper can also be proved using principles
from monotone systems theory described in [27], [28].
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