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Abstract— This paper studies the connections between mean-
field games and an auxiliary optimization problem, and com-
pares the auxiliary optimization with potential functions. We
formulate a large-population game in function space. The cost
functions of all agents are weakly coupled though the mean
of the population states/controls. We show that under some
conditions, the ε-Nash equilibrium of the mean-field game is
the optimal solution to an auxiliary optimization problem, and
this is true even when the optimization problem is non-convex.
The result enables us to evaluate the mean-field equilibrium,
and also has some interesting implications on the existence,
uniqueness and computation of the mean-field equilibrium.
While the auxiliary optimization is similar to the potential
function in potential games, we show that in general, the mean-
field game considered in this paper is not a potential game.
We compare the auxiliary optimization problem with potential
function minimization, and discuss their differences in terms
of solution concept and computation complexity.

I. INTRODUCTION

Mean-field games study the interactions among a large
population of agents. The decisions of these agents are
coupled through a mean-field term that depends on the
statistical information of the entire population. When the
population is large, the impact of individual decision is
small. We can then characterize the game equilibrium via
the interactions between the agent and the mean field, instead
of considering the detailed interactions among all the agent.
This idea was originally proposed by Lasry and Lions [1],
[2] and by Huang et al. [3], [4], where the game equilibrium
is captured by a set of coupled backward Hamilton-Jacobi-
Bellman equation and forward Fokker-Planck-Kolmogorov
equation. These seminal results attracted numerous research
attentions. They lead to extensive results on the existence [4],
[5], uniqueness [1], [6], and computation [7], [8], [9] of the
mean-field equilibrium. For a more comprehensive review,
please refer to [10] and [11].

Different from the aforementioned literature, another
strand of works focus on the efficiency of the mean-field
equilibrium. In these papers, the connections between the
mean-field game and the social welfare optimization is
studied. Along this line, [12] and [13] showed that the
coordinator can design a mean-field game to asymptotically
achieve social optima as the population size goes to infinity.
This result is true only when the game is cooperative. In non-
cooperative setting, a recent work [14] showed that the Nash
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equilibrium of an electric vehicle charging game is socially
optimal when the mean-field game is a potential game.
In the case of non-cooperative and non-potential games,
the mean-field equilibrium is shown to be inefficient in
general. For instance, [15] employed a variational approach
to study the efficiency loss of mean-field equilibria for a
synchronization game among oscillators. In [16], a mean-
field congestion game was formulated, and numerical results
were presented to show that the mean-field equilibrium is
inefficient in general. In [17], the authors showed that the
mean-field equilibrium is the optimal solution to a modified
social welfare optimization when the social welfare function
is convex.

Similar to [17], this paper studies the mean-field games
from the optimization perspective: we connect the mean-field
equilibrium to an auxiliary optimization problem. A large-
population game is formulated in vector spaces. Each agent
seeks to minimize a cost function, and the cost couples with
others through a mean field term that depends on the mean
of the population states/controls. The key contributions of
this paper are summarized as follows.

• First, we show that under some conditions, the ε-Nash
equilibrium of the mean-field game is the solution to an
auxiliary optimization problem. On the other hand, any
solution to the auxiliary optimization problem is also
an ε-Nash equilibrium of the game. Different from [17],
this is true even when the optimization problem is non-
convex. Our result establishes connections between the
mean-field game and the auxiliary optimization prob-
lem. Using this connection, we can study the property
of the mean-field equilibrium by looking at the optimal
solution to the auxiliary optimization problem. Since the
latter is well-studied, this connection can lead to new
results on the existence, uniqueness and computation of
the mean-field equilibrium.

• We compare the difference between the auxiliary opti-
mization and the potential function minimization. We
show that in general, the mean-field game considered
in this paper is not a potential game, and the auxiliary
optimization is not a potential function. On the other
hand, under some additional assumptions (i.e., mean-
field coupling term is linear), the mean-field game may
reduce to a potential game. In this case, either the
potential function or the auxiliary optimization can be
used to derive the mean-field equilibrium. We show that
compared to the potential function method, the proposed
auxiliary optimization provides a relaxed Nash equilib-
rium, which enables decentralized implementation and
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enjoys better scalability.
The paper proceeds as follows. The mean-field game is

formulated in Section II. The solution to the game problem
and its connections to the auxiliary optimization is studied in
Section III. Section IV compares the auxiliary optimization
problem with the potential function minimization.

II. PROBLEM FORMULATION

This section formulates the mean-field game in vector
spaces. It includes both discrete-time and continuous-time
problems as special cases, and addresses both deterministic
and stochastic problems. The rest of this section presents the
mathematical formulation of this problem.

A. The Mean-Field Game

Consider game in a vector space with N agents. Each
agent i has a state variable xi, a control input ui ∈ Ui and
a noise input πi, where Ui is an arbitrary vector space, and
πi is a random element in a measurable space (Π,Bi) with
an underlying probability space (Ω,F ,P). The state of each
agent is determined by the control and noise according to
the following mapping fi : Ui ×Πi → X :

xi = fi(ui, πi), ui ∈ Ui, (1)

where xi is a random element that takes value in the space X .
To ensure that xi is well-defined, we impose the following
assumption on fi(ui, πi):

Assumption 1: For each ui ∈ Ui, fi(ui, πi(·)) : Ω → X
is a measurable mapping with respect to F/Z , where Z is
a σ-algebra on X ,
Under Assumption 1, xi : Ω→ X is a measurable mapping
with respect to F/Z . Therefore, xi is a well-defined random
element that takes value in X . On the space X , we define
an inner product and a norm. In particular, denote the inner
product as x · y for x, y ∈ X , and define the norm as ||x|| =√
x · x. We assume that X is complete.
Assumption 2: X is a Hilbert space.

Throughout the paper, we assume that xi and xj are inde-
pendent. In addition, we assume that xi has bounded second
moment, i.e., there exists C̄ ≥ 0 such that E||xi||2 ≤ C̄ for
all i = 1, . . . , N . In this case, the admissible control set can
be defined as Ūi = {ui ∈ Ui|xi = fi(ui, πi),E||xi||2 ≤ C̄}.

The cost function of each agent depends on the system
state and control input. The costs of different agents are
coupled through a mean-field term that depends on the mean
of the population state. We write it as follows:

Ji(xi, ui, x̄) = E (Vi(xi, ui) + F (x̄) · xi +G(x̄)) , (2)

where x̄ ∈ X is the average of the population state, i.e.,

x̄ ,
1

N

∑N
i=1 xi, F : X → X is the mean-field coupling

term, and G : X → R is the cost associated with the mean-
field term. We impose the following regularity conditions on
Ji.

Assumption 3: (i) F (·) is globally Lipschitz continuous
on X with constant L , (ii) G(x̄) is Fréchet differentiable
on X , and the gradient of G(x̄) at 0 is bounded, i.e.,

||∇G(0)|| < ∞. (iii) the gradient of G(·) is globally
Lipschitz continuous on X with constant β, i.e., ||∇G(x)−
∇G(y)|| ≤ β||x− y||, ∀x, y ∈ X .

Given these condition, the mean-field game considered in
this paper is as follows:

min
ui

E (Vi(xi, ui) + F (x̄) · xi +G(x̄)) (3a)

s.t. xi = fi(ui, πi), ui ∈ Ūi, (3b)

where x̄ ,
1

N

∑N
i=1 xi.

Remark 1: The mean-field game (3) captures a large class
of problems studied in the literature. As it is formulated
in general vector spaces, it includes both discrete-time [7],
[18] and continuous-time system [3] as special cases, and
addresses both deterministic and stochastic cases. The inner
product term F (x̄) · xi in (3) is common in the literature. It
either arises from the price multiplied by quantity term [8],
[17] [19], or as part of the quadratic penalty of the deviation
of the system state from the population mean [3], [12]. The
structure of objective function (3) captures a large body of
problems that frequently arise in various applications [3], [7],
[12], [18], [20], [21].

Example 1: As an example, consider a deterministic
mean-field game in discrete-time [7]. The objective function
of the game is:

min
xi

||xi||2Q + ||x− x̄||2∆ + 2(Cx̄+ c)Txi (4)

where xi ∈ Rs is the system state, x̄ =
1

N

∑N
i=1 xi is the

average state, ||xi||2Q stands for xTi Qxi, C ∈ Rs×s, and Q
and ∆ are symmetric positive definite matrices of appropriate
dimensions. Next, we show that the above game problem can
be formulated as (3). Note that (4) is the degenerate case of
(3), where the disturbance term πi is 0, and xi = ui, i.e.,
fi is the identity function. Expand the norm and combine
similar terms in (4), then (4) is transformed to the following
form:

min
xi

xTi (Q+ ∆)xi + 2cTxi + 2x̄T (C −∆)xi + x̄T∆x̄ (5)

Comparing (5) to (3), we have Vi(xi, ui) = xTi (Q+ ∆)xi +
2cTxi, F (x̄) = 2(C − ∆)x̄, and G(x̄) = x̄T∆x̄. In this
case, it is easy to verify that the game problem (5) satisfies
Assumption 1-3. Therefore, (5) is a special case of our
proposed mean-field game (3).

Aside from this example, many continuous-time stochastic
games are also special cases of (3), including the seminal
work by Huang et al. [3]. More examples can be found in
[17] and [22].

The objective of this paper is to study the mean-field
game (3) from the optimization perspective: we aim to
connect the mean-field game (3) to an auxiliary optimization
problem. Once the connection is established, we can study
the properties of the mean-field equilibrium by looking at the
solution to the auxiliary optimization problem. For the latter,
many powerful tools are available in the literature. This leads
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to new results on the existence, uniqueness and computation
of the mean-field equilibrium.

III. CONNECTION TO THE AUXILIARY OPTIMIZATION

This section studies the mean-field equilibrium of (3) in
two steps. First, we characterize the mean-field equilibrium
as the solution of a set of equations, i.e., mean-field equa-
tions. Second, we show that the mean-field equations have
the same solution to an auxiliary optimization problem.

A. The Mean-Field Equations

In the context of mean-field games, we usually relax the
Nash equilibrium solution concept by assuming that each
agent is indifferent to an arbitrarily small change ε. This
solution concept is referred to as the ε-Nash equilibrium,
formally defined as follows:

Definition 1: (u∗1, . . . , u
∗
N ) is an ε-Nash equilibrium of the

game (3) if the following inequality holds

Ji(u
∗
i , u
∗
−i) ≤ Ji(ui, u∗−i) + ε (6)

for all i = 1, . . . , N , and all ui ∈ Ūi, where u−i =
(u1, . . . , ui−1, ui+1, . . . , uN ) and Ji(ui, u−i) is the compact
notation for (2) after plugging (1) in (2).

At an ε-Nash equilibrium, each agent can lower his cost by
at most ε via deviating from the equilibrium strategy, given
that all other players follow the equilibrium strategy. When
ε = 0, the ε-Nash equilibrium reduces to a Nash equilibrium.
Therefore, we can regarded it as a relaxed Nash equilibrium.

To derive the ε-Nash equilibrium of (3), we note that the
utility function (2) is only coupled through the mean field
term F (m) and G(m), and each agent has an neglectible
impact on the coupling term as the population size is large.
Therefore, in the large population case, we can approximate
the agent’s behavior with the optimal response to a determin-
istic value y ∈ X that replaces the mean field term F (m) in
the utility function (2). To this end, we define the following
optimal response problem:

µi(y) = arg min
ui

E (Vi(xi, ui) + y · xi) (7)

subject to:{
xi = fi(ui, wi)

xi ∈ Xi, ui ∈ Ūi,
(8)

where µi(y) denotes the optimal solution to the optimization
problem (7) parameterized by y, and G(m) is regarded as a
constant in (7) that can be ignored. Ideally, the determinis-
tic mean field term approximation y guides the individual
agents to choose a collection of optimal responses µi(y)
which, in return, collectively generate the mean field term
1

N

∑N
i=1 fi(µi(y), wi), and this should be close to y. In

other words, we suggests to use following equation systems

to characterize the equilibrium of the mean field game:

µi(y) = arg min
ui∈Ūi

E (Vi(xi, ui) + y · xi) (9)

x∗i = fi(µi(y), wi) (10)

y = F

(
1

N
E

N∑
i=1

x∗i

)
, (11)

Formally, we can show that the solution to (9)-(11) is an
ε-Nash equilibrium of the mean field game (3).

Theorem 1: The solution to the equation system (9)-(11),
is an εN -Nash equilibrium of the mean field game (3), and

0 < ε = O(
1√
N

).

The proof of Theorem 1 can be found in [17]. It indicates that
each agent is motivated to follow the equilibrium strategy
u∗i as deviating from this strategy can only improve the
individual utility by a negligible amount ε. Furthermore, this
ε can be arbitrarily small, if the population size is sufficiently
large.

B. Connection to the Auxiliary Optimization

In the literature, a natural candidate for the auxiliary
optimization is the sum of individual costs. This gives rise
to the following social welfare optimization problem:

min
(u1,...,uN )

N∑
i=1

E (Vi(xi, ui) + F (x̄) · xi +G(x̄)) (12)

s.t. xi = fi(ui, πi), ui ∈ Ūi, ∀i = 1, . . . , N.
(13)

As the cost function (12) represents the social welfare of
the entire system, it is desirable to attain the mean-field
equilibrium at the solution to (12). However, it is proved in
the literature that the mean-field equilibrium is not efficient.
[3], [15], [16].

Different from the literature, we construct an auxiliary
optimization problem by dropping the mean-field terms and
introducing a virtual agent with the cost function φ : X → R.
This auxiliary optimization problem is written as follows:

min
u1,...,uN ,z

E

(
N∑
i=1

Vi(xi, ui) + φ(z)

)
(14)

s.t.

z =
1

N

∑N
i=1 Exi,

xi = fi(ui, πi), ui ∈ Ūi, ∀i = 1, . . . , N
(15)

where z is the decision of the virtual agent. In the rest of
this subsection, we show that when the virtual cost satisfies
some conditions, the mean-field equations and the auxiliary
optimization (14) have the same solution.

For our purpose, we first introduce the concept of strong
duality for the auxiliary optimization problem (14). For
notation convenience, we compactly denote (14) as follows:

P ∗ = min
u,z

Js(u, z) (16)

s.t.

{
g(u, z) = 0

z ∈ X , ui ∈ Ūi, ∀i = 1, . . . , N,
(17)
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where P ∗ is the optimal value of the (16),
u = (u1, . . . , uN ) is the vector of control inputs,
Js(u, z) = E

(∑N
i=1 Vi(fi(ui, πi), ui) + φ(z)

)
, and

g(u, z) = E
∑N
i=1 fi(ui, πi) −Nz. Then the Lagrangian of

problem (16) can be defined as follows:

L(u, z, λ) = Js(u, z) + λ · g(u, z). (18)

where λ ∈ X is the Lagrange multiplier for the constraint
g(u, z) = 0. Define a mapping D : X → R as follows:

D(λ) = inf
ui∈Ūi,z∈X

L(u, z, λ), (19)

then the dual problem of the auxiliary optimization problem
(14) is:

D∗ = max
λ∈X

D(λ) (20)

where D∗ is the optimal value of the dual problem. The
auxiliary optimization problem has strong duality, if the
dual problem (20) admits a solution, and its optimal value
coincides with that of the primal problem (16).

Definition 2: The optimization problem (14) has strong
duality if P ∗ = D∗ and there exists λ∗ ∈ X such that
D∗ = D(λ∗).

Under strong duality, we can establish connections be-
tween the mean-field equilibrium and the auxiliary opti-
mization problem. This is summarized in the following two
theorems:

Theorem 2: Let φ : X → R be a Fréchet differentiable
functional such that ∇φ(z) = NF (z), ∀z ∈ X . Assume that
(14) has strong duality, then any optimal solution to (14) is
a mean-field equilibrium to the game (3).

Proof: Since the social welfare optimization (14) has
strong duality, then there exists λ∗ such that P ∗ = D∗ =
D(λ∗). Note that due to weak duality, this indicates that
λ∗ is the optimal solution to the dual problem (20), i.e.,
D∗ = infu1∈Ū1,...,uN∈ŪN ,z∈X L(u, z, λ∗). Let (u∗, z∗) be
the optimal solution to (14), then (u∗, z∗) satisfies the con-

straint z∗ =
1

N

∑N
i=1 Ef(u∗i , πi), and we have the following

inequalities:

D∗ = inf
u1∈Ū1,...,uN∈ŪN ,z∈X

L(u, z, λ∗)

≤ L(u∗, z∗, λ∗) = Js(u
∗, z∗) + λ∗ · g(u∗, z∗)

= Js(u
∗, z∗) = P ∗. (21)

Due to strong duality, P ∗ = D∗. Therefore, equality holds
in (21), indicating that (u∗, z∗) satisfies the following:

(u∗, z∗) ∈ arg min
u1∈Ū1,...,uN∈ŪN ,z∈X

L(u, z, λ∗). (22)

Since L can be decomposed in terms of ui and z, the relation
(22) is equivalent to the following:

u∗i ∈ arg min
ui∈Ūi

E (Vi(fi(ui, πi), ui) + λ∗ · fi(ui, πi)) (23)

z∗ ∈ arg min
z∈X

φ(z)−Nλ∗ · z (24)

The first-order optimality condition of (24) yields ∇φ(z∗) =
Nλ∗. Since ∇φ(z) = NF (z), we have F (z∗) = λ∗.

Therefore, the above equation sets can be reduced to the
following:

u∗i ∈ arg min
ui∈Ūi

E (Vi(fi(ui, πi), ui) + λ∗ · fi(ui, πi)) (25)

λ∗ = F

(
1

N

N∑
i=1

Efi(u∗i , πi)

)
(26)

It can be verified that (25)-(26) is equivalent to the mean-field
equations (9)-(11). Therefore, (u∗1, . . . , u

∗
N ) is a mean-field

equilibrium. This completes the proof.
Theorem 2 shows that any solution to the auxiliary opti-
mization problem is a mean-field equilibrium. Note that this
relation only holds from one direction: it does not necessarily
mean that any mean-field equilibrium is also the optimal
solution to (14).

However, the other direction also holds if the following
monotonicity condition is imposed on the mean-field cou-
pling term F (·):

Definition 3 (monotone mean-field coupling): The mean-
field coupling term F (x) is monotone with respect to x ∈ X ,
if (F (x)− F (x′)) · (x− x′) ≥ 0 for any x, x′ ∈ X .
Under this monotone assumption, we have the following
theorem:

Theorem 3: Let φ : X → R be a Fréchet differentiable
functional such that ∇φ(z) = NF (z), ∀z ∈ X . Assume that
the auxiliary optimization problem (14) has strong duality,
and assume that F (·) is monotone, then (u∗1, . . . , u

∗
N ) is the

mean-field equilibrium to (3) if and only if it is the globally
optimal solution to the auxiliary optimization problem (14).

Proof: Based on Theorem 2, the optimal solution to
(14) is a mean-field equilibrium. Therefore, it suffices to
show the other direction also holds. For notational conve-
nience, let ū = (ū1, . . . , ūN ) be the solution to the mean-

field equations (9)-(11). Define z̄ =
1

N
E
∑N
i=1 fi(ūi, πi),

and let ȳ = F (z̄). Since F (z) =
1

N
∇φ(z), we have

∇φ(z̄) = Nȳ. Since F (z) is monotone, φ(z) is convex.
Therefore, ∇φ(z̄) = Nȳ indicates that:

z̄ ∈ arg min
z∈X

φ(z)−Nȳ · z. (27)

Due to (9), we also have:

ūi ∈ arg min
ui∈Ūi

E (Vi(fi(ui, πi), ui) + ȳ · fi(ui, πi)) . (28)

The above two equations together indicate that (ū, z̄) is the
optimal solution to the following optimization problem:

min
u,z

N∑
i=1

EVi(xi, ui) + φ(z) + ȳ · (
N∑
i=1

Exi −Nz) (29)

s.t.

{
xi = fi(ui, πi)

ui ∈ Ūi, z ∈ X .
(30)

In other words, (ū, z̄) satisfies:

(ū, z̄) ∈ arg min
u1∈Ū1,...,uN∈ŪN ,z∈X

L(u, z, ȳ). (31)
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Note that due to weak duality, we have:

L(ū, z̄, ȳ) ≤ D∗ ≤ P ∗. (32)

On the other hand, we also have:

L(ū, z̄, ȳ) = Js(ū, z̄) + ȳ · g(ū, z̄)

= Js(ū, z̄) ≥ P ∗, (33)

where the last inequality is due to the fact that P ∗ is the
minimum value of Js(u, z) among all (u, z) such that z =
1

N
E
∑N
i=1 fi(ui, πi), and (ū, z̄) is one of them. Combing

(32) and (33), we have L(ū, z̄, ȳ) = P ∗, thus (ū, z̄) is the
globally optimal solution to (14). This completes the proof.

This theorem establishes equivalence between the mean-
field equilibrium and the optimal solutions to (14). When
the mean-field term is monotone, the solution set of the
mean-field equations is the same as that of the auxiliary
optimization problem as long as (14) has strong duality.
Regarding this result, an interesting special case is when (14)
is convex. To ensure convexity, we introduce the following
conditions:

Assumption 4: (i) fi(ui, πi) is affine with respect to ui,
∀πi ∈ Π, (ii) Vi(xi, ui) is convex with respect to (xi, ui),
(iii) X and Ui are convex, (iv) F (·) is monotone.
Under Assumption 4, the auxiliary optimization problem has
strong duality under mild constraint qualifications. Therefore,
we have the following corollary:

Corollary 1: Let φ : X → R be a Fréchet differentiable
functional such that ∇φ(z) = NF (z), ∀z ∈ X . Assume that
the interior of the set Ūi is non-empty, and the conditions
of Assumption 4 hold, then (u∗1, . . . , u

∗
N ) is the mean-field

equilibrium to (3) if and only if it is the globally optimal
solution to the auxiliary optimization problem (14).

It can be verified that Corollary 1 is equivalent to the result
in [17]. This paper is different from [17] in that we relax the
convexity assumption for the auxiliary optimization problem.
This generalizes to the case where the auxiliary optimization
is non-convex but has strong duality. The following is an
example of this case.

Example 2: Consider a game with N agents. Each agent
i wants to minimize the following objective function:

min
xi∈R

(xi − αi)2 + κxisin

(
x̄− 1

N

N∑
i=1

αi

)
, (34)

where αi is a scalar and κ > 0 is a positive constant.
In this example, the mean-field coupling term is F (x̄) =

κsin
(
x̄− 1

N

∑N
i=1 αi

)
. It is clear that the monotonicity

condition does not hold.
Consider a virtual supply cost that satisfies ∇φ(z) =

NF (z). This gives φ(z) = −Nκcos
(
z −

∑N
i=1 αi

)
, then

the auxiliary optimization is as follows:

min
x1,...,xN ,z

N∑
i=1

(xi − αi)2 −Nκcos

(
z − 1

N

N∑
i=1

αi

)
(35)

s.t.

z =
1

N

∑N
i=1 xi;

xi = R, z ∈ R, ∀i = 1, . . . , N.
(36)

The above problem is non-convex with respect to
(x1, . . . , xN , z), but we can still show that the primal prob-
lem (35) has strong duality. In particular, we summarize the
result in the following theorem:

Theorem 4: If 0 < κ < 2, then (i) the auxiliary optimiza-
tion (35) has strong duality, (ii) the mean-field equations for
(34) has a unique solution, (iii) the decisions (x∗1, . . . , x

∗
N )

is the mean-field equilibrium for (34) if and only if it is the
globally optimal solution to the auxiliary optimization (35).

Proof: To prove (i), it suffices to show that there exists
λ∗ such that P ∗ = D∗ = D(λ∗). To show this, we first note
that since κ > 0, the cost function of primal problem (35)
is lower bounded by −Nκ:

N∑
i=1

(xi − αi)2 −Nκcos

(
z − 1

N

N∑
i=1

αi

)
≥ −Nκ

It can be verified that when xi = ai and z =
1

N

∑N
i=1 αi,

the cost function of (35) equals −Nκ and the constraints
are satisfied. Therefore, −Nκ is the optimal value for the
primal problem. According to Definition 2, it suffices to find
λ∗ such that the minimum value of L(u, z, λ∗) is also −Nκ.
Let λ∗ = 0, then the Lagrangian dual L(u, z, 0) corresponds
to the following problem:

min
x1,...,xN ,z

N∑
i=1

(xi − αi)2 −Nκcos

(
z − 1

N

N∑
i=1

αi

)
(37)

s.t.: xi = R, z ∈ R, ∀i = 1, . . . , N..
The optimal value of (37) is clearly −Nκ. Therefore, strong
duality holds.

To prove (ii), the idea is to construct a contraction map-
ping, whose fixed point is the solution to the mean-field
equations. In particular, we first regard m as given and
solve the problem (34) to derive the optimal solution as

x∗i = αi −
1

2
κsin

(
x̄− 1

N

∑N
i=1 αi

)
. Then we define a

function T : R→ R that maps x̄ to the average of x∗i :

T (x̄) =
1

N

N∑
i=1

αi −
1

2
κsin

(
x̄− 1

N

N∑
i=1

αi

)
. (38)

It can be verified that the mean-field equilibrium is the fixed
point of this mapping. Since |sin(x)− sin(y)| ≤ |x− y|, we

have T (m1) − T (m2) ≤ 1

2
κ|m1 − m2| for any m1 ∈ R

and m2 ∈ R. Therefore, as κ < 2, T (x̄) is a contraction
mapping, and it has a unique fixed point.

To prove (iii), we can use result (i), (ii) and Theorem 2.
This completes the proof.
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Remark 2: The existence and uniqueness of (34) are de-
rived based on the connection between the mean-field game
and the auxiliary optimization problem. Note that this is not
possible based on results in the existing literature, where the
existence of mean-field equilibria typically requires the agent
cost function to be convex with respect to control [1], [6],
[23], [24], and the uniqueness typically requires the mean-
field term F (·) to be monotone [6], [24], [25]. Neither of
these conditions holds for (34).

IV. RELATION TO POTENTIAL GAME

Theorem 2 and Theorem 3 shows that the mean-field
equilibrium is the solution to the auxiliary optimization
problem. From this perspective, the auxiliary optimization
is similar to potential functions in a potential game, where
the Nash equilibrium is the optimal solution to the potential
function minimization [26]. However, we emphasize that in
general, the mean-field game (3) considered in this paper is
not a potential game, and the auxiliary optimization is not a
potential function. In this section, we discuss the differences
between the auxiliary optimization and the potential function
minimization in terms of solution concept and computation
complexity.

A. A Counter Example

In general, the mean-field game (3) is not a potential game.
As an example, consider a game with the following objective
function:

Ji(x1, · · · , xN ) = (xi − 1)2 + xilogx̄, (39)

According to Theorem 4.5 in [27], the necessary and suffi-
cient condition for (39) to be a potential game is that

∂2Ji
∂xi∂xj

=
∂2Jj
∂xi∂xj

.

This clearly does not hold for (39). Therefore, the mean-
field game (3) does not admit a potential function. On the
one hand, it is easy to verify that (39) satisfies Assumption 4.
Therefore, based on Theorem 3, we can still use the auxiliary
optimization (14) to characterize the mean-field equilibrium.

B. Compare Auxiliary Optimization with Potential Function
Minimization

Under some additional assumptions (i.e., F (x̄) is linear
function), the mean-field game (3) may reduce to a potential
game. In this case, we can either use the auxiliary opti-
mization or the potential function to study the mean-field
equilibrium. These two methods provide different solutions.
In this subsection, we compare them in terms of solution
concepts and computation complexity.

For illustration purpose, consider a game problem with the
following objective function:

Ji(x1, · · · , xN ) = (xi − 1)2 + xix̄. (40)

On the one hand, it can be verified that (40) is a potential
game, and the potential function minimization problem is:

min
x1,...,xN

N∑
i=1

(xi − 1)2 +
1

N

N∑
i=1

+
1

2N

∑
i 6=j

xixj . (41)

On the other hand, the objective function (40) satisfies
Assumption 4. According to Corollary 1, the mean-field
equilibrium is the solution to the following auxiliary opti-
mization problem:

min
x1,...,xN

N∑
i=1

(xi − 1)2 +
N

2
x̄2. (42)

Both (41) and (42) are convex optimization, and their solu-

tions are xi =
2N

3N + 1
and xi =

2

3
, respectively.

These solutions are both equilibria of the mean-field game
(40). Their differences are as follows: first, potential function
provides an exact Nash equilibrium to (40), while the auxil-
iary optimization produces an ε-Nash equilibrium. This is a
relaxed solution concept compared to Nash equilibrium. Sec-
ond, the potential function minimization is typically solved
as a centralized optimization, but the auxiliary optimization
can be implemented in a decentralized fashion [17]. This
enables the parallel execution of the algorithm, thus the
time complexity for solving (14) does not depend on N .
To summarize, the auxiliary optimization method achieves
better scalability than potential function minimization at the
price of a relaxed solution concept.

V. CONCLUSION

This paper studies a class of mean-field games from
the optimization perspectives. We showed that the ε-Nash
equilibrium of the mean-field game is the optimal solution
to an auxiliary optimization problem. This connection en-
ables us to derive the mean-field equilibrium by solving
the corresponding optimization problems. This optimization
problem is different from the potential function minimiza-
tion, and we compared them in terms of solution concepts
and computation complexity. Future work includes extending
the proposed approach to the case of infinitely many agents
and more general formulations where the mean field term
depends on the probability distribution of the population
state.
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