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Abstract— In this paper, for a class of linear, distributed
port-Hamiltonian systems defined on a one-dimensional spatial
domain, an equivalent Brayton–Moser formulation is obtained.
The dynamic is expressed as a gradient equation with respect
to a new storage function, the “mixed-potential,” with the
dimensions of power, and the system is passive with respect
to a supply rate related to the reactive power. The Brayton–
Moser representation is the starting point for the synthesis of
boundary control laws whose effect on the system is to shape
the mixed-potential function. The general theory is illustrated
with the help of an example, namely the boundary stabilisation
of longitudinal vibrations of a beam with internal dissipation.

Index Terms—

I. INTRODUCTION

Port-Hamiltonian systems [1] can be considered as the
mathematical formalization of bond-graphs to describe
lumped parameter physical systems, [2], [3]. The general-
ization to the infinite dimensional scenario leads to the def-
inition of distributed port-Hamiltonian systems [4], [5] that
represent a particular case of the more general framework
presented in [6] and then extended in [7] to open physical
systems. Distributed port-Hamiltonian systems have proved
to represent a powerful framework for modeling, simulation
and control of physical systems described by PDEs.

Most of the current research on the stabilisation of dis-
tributed port-Hamiltonian systems is about the development
of boundary controllers. The simplest synthesis methodology
consists in adding some dissipation, and / or in shaping the
energy function to shift the equilibrium, with stability being
ensured by the passivity properties of the controlled system,
and proved by using the total energy (Hamiltonian) as
Lyapunov function, [7]–[15]. Here, the idea is to procede
in a different manner by determining a control action able
to shape a power-related storage function. In other words,
in this paper the generalisation of the power-based control
of finite dimensional port-Hamiltonian systems [16]–[18] to
the distributed parameter case is presented.

In this respect, the first step consists in re-writing the
port-Hamiltonian dynamic in the so-called Brayton–Moser
form, i.e. in terms of a gradient equation of a mixed-
potential function with the unity of power, [19]. Originally
developed for the description of RLC networks, the Brayton–
Moser equations have been extended to nonlinear systems in
[16]–[18], and to the description of autonomous distributed
parameter systems in [20]. Here, the relation between such

representation and the port-Hamiltonian formalism is pre-
sented, and exploited for control synthesis purposes. This
approach differs from the port-Hamiltonian theory because
the candidate Lyapunov function is not the Hamiltonian (i.e.,
the total energy), but the mixed-potential (i.e., a quantity
related to the power distribution). The main advantage is
that in the proposed stabilisation procedure the internal
dissipation does not pose any constraint on the applicability
of the method itself. In fact, it is well known that control
schemes that rely on energy-balancing are limited by the
presence of pervasive dissipation: this issue is usually called
dissipation obstacle in literature, [21]. Moreover, control
techniques based on energy-shaping and able to overcome
this constraint, require to have at disposal the full-state of
the plant [8]–[10], [14].

The paper is organised as follows. In Section II, the class
of distributed port-Hamiltonian systems for which the pre-
sented result are applicable is briefly discussed, together with
their main properties. Their equivalent formulation in terms
of a Brayton–Moser equation is presented in Section III, and
then exploited for the development of buondary stabilising
control laws in Section IV. The proposed methodologies are
illustrated with the help of an example, the buondary control
of the transversal vibrations in an elastic beam, in Section V.
Finally, conclusions and indications about possible future
developments and open problems are reported in Section VI.

II. DISTRIBUTED PORT-HAMILTONIAN SYSTEMS

In this paper, we refer to a class of distributed port-
Hamiltonian systems described by the PDE

∂x

∂t
(t, z) = P1

∂

∂z

δH
δx

(x(t, z))+
[
P0(z)−G0(z)

]δH
δx

(x(t, z))

(1)
with x ∈ X := L2(a, b; Rn), and z ∈ [a, b]. Moreover,
P1 = PT

1 and invertible, P0(z) = −PT
0 (z), G0(z) =

GT
0 (z) ≥ 0, and H(x) is the Hamiltonian function, bounded

from below. It is also assumed that

H(x(t, ·)) =

∫ b

a

H(x(t, z), z) dz (2)

being H(x, z) the energy density. Such class is an extension
of the linear case studied in [14], [15], [22], [23], which
corresponds to a quadratic energy density. Finally, in (1), δ
denotes the functional gradient, i.e. the variational derivative,
[4]–[6]. In the next lemma, it is shown how to compute it
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for a simpler class of functionals employed in this paper and
of which the Hamiltonian (2) is a particular case.

Lemma 2.1: Let us consider the functional

F(f) =

∫ b

a

F (f, fz) dz

where F is a C1 function, f is a C1 function such that
f(a) = f(b) = 0, and fz = ∂f

∂z . Then,

dF
dt

(f) =

∫ b

a

∂Tf

∂t

[
∂F

∂f
(f, fz)−

∂

∂z

∂F

∂fz
(f, fz)

]
dz

=:

∫ b

a

∂Tf

∂t

δF
δf

(f) dz

(3)

that implicitly defines the functional gradient (or variational
derivative), of the functional F .

Remark 2.1: The state space of (1) is called space of
energy variables, while δH

δx denotes the co-energy variables.
From the previous lemma, since the energy density H(x, z)
in (2) does not depend on the derivatives of the state variable
x with respect to the spatial coordinate z, we have that

δH
δx

(x(t, z)) =
∂H

∂x
(x(t, z)) =: e(t, z) (4)

i.e. the co-energy variables e are the partial derivative of the
energy density H with respect to the energy variables x.

To define the boundary input and output for the PDE (1),
at first the port variables f∂ , e∂ ∈ Rn given by(

f∂
e∂

)
=

1√
2

(
P1 −P1

I I

)
︸ ︷︷ ︸

=:R

( ∂H
∂x (b)
∂H
∂x (a)

)
(5)

are introduced, [22]. They are a linear combination of the
restriction of the co-energy variables to the boundary of
the spatial domain, and integration by parts shows that
d
dtH(x(t)) ≤ eT

∂ (t)f∂(t).
The problem of defining the boundary input for (1) that

leads to a boundary control system on X in the sense of
the semigroup theory, see e.g. [24], has been addressed in
[22] in the linear case, i.e. when H(x, z) is quadratic. More
details on this point in Remark 2.2. In this paper, the same
parametrisation is adopted for both the input and the output.
In this respect, denote by W be a n × 2n full rank, real
matrix, and define the input u(t) as

u(t) = W

(
f∂(t)
e∂(t)

)
(6)

Remark 2.2: Assume that H is quadratic, i.e. that here
exists a bounded and continuous matrix-valued function L(·)
such that L(z) = LT(z) and L(z) ≥ κI , with κ > 0, for all
z ∈ [a, b], and H(x, z) = 1

2x
TL(z)x. Clearly, δH

δx = ∂H
∂x =

Lx ∈ H1(a, b;Rn). As discussed in [22], since W has full
rank and if WΣWT ≥ 0, with

Σ =

(
0 I
I 0

)
then (1) with input (6) is a boundary control system on X ,
and the operator J x := P1

∂
∂z (Lx) + (P0 − G0)Lx with

domain D(J ) =
{
Lx ∈ H1(a, b;Rn) | u = 0

}
generates a

contraction semigroup on X . Here, H1(a, b;Rn) denotes the
Sobolev space of order one.

Now, let W̃ be a n× 2n full rank, real matrix, such that(
WT W̃T

)
is invertible, and let PW be given by

PW =

(
WΣWT WΣW̃T

W̃ΣWT W̃ΣW̃T

)−1

(7)

If the output is defined as

y(t) = W̃

(
f∂(t)
e∂(t)

)
(8)

then, the following energy balance equation is satisfied:

dH
dt

(x(t)) = −
∫ b

a

∂TH

∂x
(x)G0(z)

∂H

∂x
(x) dz+

+
1

2

(
u(t)
y(t)

)T

PW

(
u(t)
y(t)

)
(9)

This means that (1) is dissipative with storage function H(x)
and quadratic supply rate defined by PW .

III. BRAYTON–MOSER FORMULATION

Brayton–Moser equations originally appeared in the de-
scription of RLC circuits [19]. Differently from the Hamilto-
nian formulation where the energy variables are used (charge
and magnetic flux), the dynamic is expressed in terms of the
co-energy variables (voltages and currents). The result is a
gradient equation with respect to a mixed-potential function
P that in finite dimensions usually takes the form

Q(e(t))ė(t) =
∂P

∂e
(e(t)) +B(e(t))u(t) (10)

where e denotes the co-energy variables, and u is the input.
In [25], the relation between port-Hamiltonian and Brayton–
Moser formulations has been established in the lumped
parameter case, and then exploited e.g. in [18] for control
purposes. The scope of this section is to obtain the Brayton–
Moser formulation of (1) by re-writing it in the co-energy
variables e = ∂H

∂x (x) defined by (4).
Now, let us assume that relation (4) is invertible, which

implies that there exists a map from the co-energy to the
energy variables in the form

x(t, z) =
∂H?

∂e
(e(t, z), z) (11)

with H? the Legendre transformation of H , given as

H?(e(t, z), z) = eT(t, z)x(t, z)−H(x(t, z), z)

Then, the port-Hamiltonian system (1) can be expressed in
the co-energy variables, since e and x are related:

∂x

∂t
(t, z) =

∂2H?

∂e2
(e(t, z), z)

∂e

∂t
(t, z) (12)

Remark 3.1: When (1) is linear, i.e. when H is quadratic
in the energy variables, the mapping (11) can be easily
computed. In fact, under the same conditions of Remark 2.2,
if H(x, z) = 1

2x
TL(z)x, then e(t, z) = L(z)x(t, z), which

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

593



implies that H?(e, z) = 1
2e

TL−1(z)e, that is well defined
since L(z) is non-singular.

Differently from the port-Hamiltonian system (1) where
the Hamiltonian H defined in (2) depends on the state
variable x and not on its derivative with respect to the spatial
coordinate z, the extension of (10) to the distributed parame-
ter case requires the definition of a (class of) mixed-potential
functionals P that depends on the co-energy variable e and
its spatial derivative.

Proposition 3.1 ([26]): Denote by M1 = −MT
1 an invert-

ible skew-symmetric matrix, and suppose that P0 = G0 = 0
in (1). Then, (1) admits the Brayton–Moser form

Q(e(t, z), z)
∂e

∂t
(t, z) =

δP
δe

(e(t, z)) (13)

where

Q(e, z) = M1P
−1
1

∂2H?

∂e2
(e, z) (14)

P(e) =
1

2

∫ b

a

eT(z)M1
∂e

∂z
(z) dz (15)

being H? the co-energy density, i.e. the Legendre trasforma-
tion of H . Moreover, for the mixed-potential P defined in
(14), the following balance relation holds true:

dP
dt

(e(t)) =

∫ b

a

∂Te

∂t
Q(e, z)

∂e

∂t
dz+

+
1

2

(
u(t)
y(t)

)T

MW

(
u̇(t)
ẏ(t)

)
(16)

where u and y are the boundary input and output defined in
(6) and (8), respectively, and

MW =

(
W

W̃

)−T

R−TΣMR
−1

(
W

W̃

)−1

(17)

with

ΣM =

(
M1 0
0 −M1

)
Note that, differently from (7), MW = −MT

W .
Proof: From Lemma 2.1, we have that

dP
dt

=
1

2

∫ b

a

(
∂Te

∂t
M1

∂e

∂z
+ eTM1

∂

∂z

∂e

∂t

)
dz

=

∫ b

a

∂Te

∂t
M1

∂e

∂z
dz +

1

2

[
eT(z)M1ė(z)

]b
a

(18)

which implies that δP
δe = M1

∂e
∂z . From (12), we can rewrite

(1) as follows:

∂2H?

∂e2
(e(t, z), z)

∂e

∂t
(t, z) = P1M

−1
1

δP
δe

(e(t, z))

Since P1 is non-singular, we obtain the expression (14) for
Q(e, z). The term in (18) that depends on the boundary
conditions of (1), and their time derivative is[

eT(z)M1ė(z)
]b
a

=

(
e(b)
e(a)

)T

ΣM

(
ė(b)
ė(a)

)

where from (6) and (8), we have that(
u
y

)
=

(
W

W̃

)
R

(
e(b)
e(a)

)
(19)

which clearly implies that[
eT(z)M1ė(z)

]b
a

=

=

(
u
y

)T(
W

W̃

)−T

R−TΣMR
−1

(
W

W̃

)−1(
u̇
ẏ

)
since

(
WT W̃T

)
is invertible. Finally, the couple of rela-

tions (16) and (17) are a consequence of the fact that

∂Te

∂t
(t, z)M1

∂e

∂z
(t, z) =

∂Te

∂t
(t, z)

δP
δe

(e(t, z))

=
∂Te

∂t
(t, z)Q(e(t, z), z)

∂e

∂t
(t, z)

Remark 3.2: For any invertible, skew symmetric matrix
M1, we have a mixed-potential P and a corresponding
(but equivalent) Brayton–Moser formulation (13) of (1).
Moreover, given P as defined in (15), then also PΨ(e) =
P(e) + Ψ(e(a), e(b)) is an admissible mixed-potential func-
tional associated with the same PDE (13). The addition
of the function Ψ has an effect on the balance relation
(16) only and, more precisely, on the part that involves the
boundary terms. This fact is exploited in Section IV for
control synthesis purposes.

With Remark 3.2 in mind, Proposition 3.1 is now extended
to cope with the general case, i.e. when in (1) P0(z) and
G0(z) are different from 0.

Proposition 3.2: Denote by M1 = −MT
1 an invertible,

skew-symmetric matrix. Then, the PDE (1) can be written in
the Brayton–Moser form (13), in which Q(e, z) is given in
(14), and the mixed-potential P is:

P(e) =
1

2

∫ b

a

eT(z)

[
M1

∂e

∂z
(z) +M0(z)e(z)

]
dz+

+
1

2

(
e(b)
e(a)

)T

M∂

(
e(b)
e(a)

)
(20)

with M∂ = MT
∂ , if there exists M0(z) = MT

0 (z) such that

P1M
−1
1 M0(z) = P0(z)−G0(z) (21)

Moreover, for the mixed-potential (20), the balance relation

dP
dt

(e(t)) =

∫ b

a

∂Te

∂t
Q(e, z)

∂e

∂t
dz+

+
1

2

(
u(t)
y(t)

)T

(MW +M ′∂)

(
u̇(t)
ẏ(t)

)
(22)

holds with MW defined in (17) and

M ′∂ = 2

(
W

W̃

)−T

R−TM∂R
−1

(
W

W̃

)−1

(23)

with (M ′∂)
T

= M ′∂ , being u and y the boundary input and
output of (1) introduced in (6) and (8), respectively.
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Proof: By taking the time derivative of (20), from (18)
we obtain that

dP
dt

=

∫ b

a

∂Te

∂t

[
M1

∂e

∂z
+M0(z)e

]
dz+

+

(
e(b)
e(a)

)T(
1

2
ΣM +M∂

)(
ė(b)
ė(a)

)
(24)

which implies that

δP
δe

(e(t, z), z) = M1
∂e

∂z
(t, z) +M0(z)e(t, z) (25)

From (12), the PDE (1) can be written as

∂2H?

∂e2
(e, z)

∂e

∂t
=

= P1M
−1
1

{
M1

∂e

∂z
+M1P

−1
1 [P0(z)−G0(z)] e

}
which leads to the Brayton–Moser formulation (13) with
Q(e, z) given as in (14), provided that (21) holds. The power
balance relation (22) for the mixed-potential (20) follows in
the same way as in the proof of Proposition 3.1, with M ′∂
given as in (23) and obtained in the same way as MW , see
(17).

An important class of port-Hamiltonian systems that satis-
fies the conditions of the previous proposition is investigated
in the next corollary. The equation modelling the damped
longitudinal vibrations in a beam discussed in Section V, as
long as the Timoshenko beam equation [9], or the shallow
water equation, [12], [27] belong to this class.

Corollary 3.1 ([26]): Let us consider the port-
Hamiltonian system (1), and suppose that n = 2N ,
with N ≥ 1. Denote by x = (xq, xp) the state variable,
with xq, xp ∈ L2(a, b;RN ), and by e = (eq, ep) the
co-energy variable. If

P1 =

(
0 P̄1

P̄T
1 0

)
P0(z) =

(
0 P̄0(z)

−PT
0 (z) 0

)
G0(z) =

(
Ḡq(z) 0

0 Ḡp(z)

)
where P̄1, P̄0(z), Ḡq(z) and Ḡp(z) are N ×N real matrices
such that P̄1 is non-singular, Ḡq(z) = ḠT

q (z) ≥ 0, and
Ḡp(z) = ḠT

p (z) ≥ 0, then this system admits a Brayton–
Moser formulation (13) with

Q(eq, ep, z) =

(
−I 0
0 I

)
∂2H?

∂(eq, ep)2
(eq, ep, z) (26)

and

P(eq, ep) =
1

2

∫ b

a

(
eq
ep

)T
[(

0 −P̄1

P̄T
1 0

)
︸ ︷︷ ︸

=:M1

∂

∂z

(
eq
ep

)
+

+

(
Ḡq(z) −P̄0(z)
−P̄T

0 (z) −Ḡp(z)

)
︸ ︷︷ ︸

=:M0(z)

(
eq
ep

)]
dz

Remark 3.3: Corollary 3.1 is a generalisation of a similar
result presented in [20], where the Brayton–Moser formu-
lation of a transmission line with dissipation is presented.
An analogous PDE describing the longitudinal vibrations in
a beam is discussed in Section V to illustrate the control
synthesis methodology. In this respect, note that, differently
from the original port-Hamiltonian system with the balance
relation (9), for the Brayton–Moser equation it is not pos-
sible to rely on balance relation (16) to prove stability of
an equilibrium. Beside the fact that P is not necessarily
bounded or characterised by a (local) minimum at the desired
equilibrium, the matrix Q is not negative definite, so P is
not decreasing along system trajectories when u(t) = 0. This
problem and a possible solution that extends [16], [20] are
discussed in the next section.

IV. BOUNDARY CONTROL

The scope of this section is to show how to exploit
Bayton–Moser formulation of (1) to determine a control law
u(t) that stabilises an equilibrium x? ∈ L2(a, b;Rn) or,
equivalently, e? ∈ H1(a, b;Rn). Clearly, from (11) and (12),
we have that

x?(z) =
∂H?

∂e
(e?(z), z) ⇔ δP

δe
(e?(z), z) = 0 (27)

The main idea is to use the mixed-potential P as a Lyapunov
function, and to rely on the balance relation (22) to compute
a control action u(t) so that Ṗ(e(t)) is not increasing along
system trajectories. As in the finite dimensional case (see e.g.
[16], [28]), asymptotic stability is then proved, for example,
thanks to the LaSalle’s Invariance Principle, [29, Theorem
3.64].

It has been pointed out in Remark 3.3 that the main
limitation of the balance relation (22) which prevents its use
in the control synthesis is that, in general, the symmetric part
of the matrix Q is not negative semi-definite. For example,
under the hypotheses of Corollary 3.1, from (26) we have that
Q+QT is clearly sign indefinite. The goal is to determine,
starting from a given mixed-potential P , a new admissible
functional Pa that satisfies a balance relation in the form
(22) for some Qa such that Qa + QT

a ≤ 0. The problem
of constructing a family of Pa and Qa pairs among which
selecting the ones with the desired property is takled in the
next proposition, which is a simple extension of an analogous
result presented in [20].

Proposition 4.1 ([26]): Let us consider the Brayton–
Moser formulation (13) of the boundary control system (1)
obtained in Proposition 3.2. Then, for any λ ∈ R and n× n
symmetric matrix Λ = ΛT, if M1ΛQ(e, z) is symmetric, we
have that

Pa(e) = λP(e) +
1

2

∫ b

a

δTP
δe

(e)Λ
δP
δe

(e) dz (28)

and

Qa(e, z) = λQ(e, z) +M0(z)ΛQ(e, z) +M1Λ
∂Q(e, z)

∂z
(29)
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Proof: The result is proved by taking the time derivative
of (28) under the constraint that the system evolution is
expressed by (13), and δP

δe given by (25). As far as the first
term in (28) is concerned, we have that Ṗ is equal to (22)
while, as far as the integral one, we can write that

d

dt

(
1

2

δTP
δe

Λ
δP
δe

)
=
δTP
δe

Λ
∂

∂t

[
M1

∂e

∂z
+M0(z)e

]
=
∂Te

∂t
M0(z)ΛQ(e, z)

∂e

∂t
+

+
∂Te

∂t
M1ΛQ(e, z)

∂

∂z

∂e

∂t
(30)

Since M1ΛQ(e, z) is supposed symmetric, we can write that

∂Te

∂t
M1ΛQ(e, z)

∂

∂z

∂e

∂t
=

∂

∂z

[
1

2

∂Te

∂t
M1ΛQ(e, z)

∂e

∂t

]
+

+
∂Te

∂t
M1Λ

∂Q(e, z)

∂z

∂e

∂t
(31)

If we substitute (31) in (30) and integrate on [a, b], the first
term in (31) depends only on the values of the co-energy
variables at the boundary of the spatial domain, while the
other terms, together with the contribution related to λṖ
define ∂Te

∂t Qa
∂e
∂t , with Qa given in (29).

Remark 4.1: From (22), (30) and (31), we deduce that Ṗa
is equal to the sum of two main contributions. The first one
is a quadratic term in the time derivative of the co-energy
variables, i.e. of ∂e

∂t . The second one, instead, is a quantity
that depends on the restriction of the co-energy variables and
of their time derivative at the boundary of the domain, i.e.,
because of (19), on the boundary inputs and outputs, and
their time derivative. In fact, if with some abuse in notation
we define

MΛ(u, y) :=

(
W

W̃

)−T

R−T×

×
(
M1ΛQ(e(b), b) 0

0 −M1ΛQ(e(a), a)

)
R−1

(
W

W̃

)−1

then after simple computations we have that the quantity
related to the boundary conditions is

1

2

(
u̇
ẏ

)T [
λ (−MW +M ′∂)

(
u
y

)
+MΛ(u, y)

(
u̇
ẏ

)]
(32)

If the symmetric part of Qa obtained in (30) is negative semi-
definite, (32) could be a good starting point for the definition
of the boundary control action u that stabilises the system.
This point is discussed in the remaining part of this section.

Remark 4.2: Remark 3.2 points out that the control design
could benefit from the addiction to (28) of a function
Ψa(e(a), e(b), ė(a), ė(b), . . . ) that depends on the co-energy
variables, and their time derivatives, evaluated at the bound-
ary of (1). In fact, this would lead to an admissible mixed-
potential Pa which satisfies a novel balancing relation in
which Ψa is a degree of freedom that allows to obtain
different boundary control laws.

Now, let us consider the system (1) and denote by y? the
output associated with the equilibrium x?(z) defined in (27).
This means that, from (8), we have(

u?
y?

)
=

(
W

W̃

)
R

(
∂H
∂x (x?(b))
∂H
∂x (x?(a))

)
≡
(
W

W̃

)
R

(
e?(b)
e?(a)

)
(33)

being (u?, y?) the input and the output associated with the
equilibrium x?(z), or e?(z). The idea is to determine under
which conditions the closed-loop system resulting from the
feedback interconnection

u(t) = yc(t) uc(t) = y? − y(t) (34)

of (1) with the (linear) control system{
ẋc(t) = Acxc(t) +Bcuc(t)

yc(t) = Ccxc(t) +Dcuc(t)
, xc ∈ Rnc (35)

is asymptotically stable. Without loss of generality, let us
assume that u? = y? = 0, which implies that e?(z) = 0.

The stabilising boundary controller (35) is determined
thanks to a standard Lyapunov method by reling on the
properties of a candiate Lyapunov functional Pcl associated
with the closed-loop system, defined later on. If the require-
ments on existence and regularity of the trajectories (i.e.,
pre-compactness of the orbits) for the closed-loop system
are met, then asymptotic stability can be proved on the basis
of the extension to distributed parameter systems of the La
Salle’s Invariance Principle, [29, Theorem 3.64]. The main
assumption is about the pre-compactness of the orbits. When
H not quadratic (see Remark 2.2), checking this property is
a difficult problem by itself, and its solution in the general
case is beyond the scopes of this paper. However, for linear
port-Hamiltonian systems, provided that the control action
is generated by a passive system, the LaSalle’s Invariance
Principle can always be applied, see e.g. [30].

Starting from Proposition 4.1 and Remark 4.2 and with
some abuse in notation, let us define a shaped closed-loop
mixed-potential Pcl as:

Pcl (e, xc) := Pa (e)+Ψa(u, y)+Pc(xc)+Ψc(uc, yc) (36)

where Pa is given in (28), and for simplicity

Pc(xc) =
1

2
xT
c Γc0xc +

1

2
ẋT
c Γc1ẋc

Ψc(uc, yc) =
1

2

(
uc
yc

)T

Γc

(
uc
yc

)
Ψa(u, y) =

1

2

(
u
y

)T

Γa

(
u
y

) (37)

Note that u, y, uc and yc are in fact function of e and xc
because of (6), (8), (34), and (35). In (37), it is assumed that
Γc0, Γc1, Γc and Γa are symmetric and positive semi-definite.

To compute the variation of Pcl along system trajectories
(e(t), xc(t)), note that Ṗa easily follows from Proposition 4.1
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and Remark 4.1, while

Ṗc(xc) =xT
c Γc0 (Acxc +Bcuc) +

+ ẋT
c Γc1 (Acẋc +Bcu̇c)

Ψ̇c(uc, yc) =

(
uc

Ccxc +Dcuc

)T

Γc×

×
(

u̇c
Cc (Acxc +Bcuc)

)
Ψ̇a(u, y) =

(
u
y

)T

Γa

(
u̇
ẏ

)
=

(
−Ccxc −Dcuc

uc

)T

Γa×

×
(
−Cc (Acxc +Bcuc)−Dcu̇c

u̇c

)

(38)

where, for the last relation, (34) has been taken into ac-
count. This implies that Ṗcl is equal to the sum of two
contributions. From Proposition 4.1, we get that the first
one is

∫ b
a
∂Te
∂t Qa

∂e
∂tdz in which Qa + QT

a ≤ 0, while the
second one is a quadratic function of (xc, ẋc, uc, u̇c). These
considerations lead to the next stability result, that is an
immediate consequence of the La Salle’s Invariance Principle
in infinite dimensions, see e.g. [29, Theorem 3.64].

Proposition 4.2: Denote by x?(z) ∈ L2(a, b;Rn) an
equilibrium for (1), which corresponds to an e?(z) ∈
H1(a, b;Rn) because of (27). Assume, without loss of
generality, that e?(z) = 0, which implies that y? = 0, and
that the (linear) control system (35) is interconnected to (1)
according to (34). If there exists ε > 0 such that along system
trajectories

Ṗcl(e(t), xc(t)) ≤
∫ b

a

∂Te

∂t
(e(t, z))Qa(e(t, z))·

· ∂e
∂t

(e(t, z)) dz − ε ẋT
c (t)ẋc(t) (39)

with Qa +QT
a ≤ 0, and if the largest invariant subset of{

(e(t), xc(t)) ∈ H1(a, b;Rn)× Rnc |

Ṗcl(e(t), xc(t)) = 0
}

(40)

equals {(0, 0)}, then, under the assumptions of existence
of solutions, and of pre-compactness of the orbits for the
closed-loop system, the equilibrium point e?(z) = 0 is
asymptotically stable.

Remark 4.3: The applicability of the La Salles Invariance
Principle does not require that the Lyapunov functional, Pcl
in this case, has a minimum at the equilibrium, but only that
such functional is not increasing along system trajectories.
This properties is guaranteed by (39). A good starting point
in the control synthesis is to define Pcl thanks to (36) in
such a way that it is radially unbounded and with, at least,
a local minimum at the equilibrium. Then, provided that the
closed-loop system is well-posed, i.e. that a solution exists,
and that the orbits are pre-compact, the final step consists in

checking the invariance properties of the orbits contained in
the set (40) that defines the steady state.

Remark 4.4: In (39), the existence of such an ε > 0
implies that in steady state the control system (35) brings
system (1) to a configuration in which the boundary inputs
and outputs u and y are constant. Moreover, from the first
relation in (38), it is easy to see that if (39) holds we have that
Γc1Ac + AT

c Γc1 ≤ −2εI , which means that Ac is Hurwitz,
i.e. the control system (35) is asymptotically stable.

V. EXAMPLE: THE LONGITUDINAL VIBRATIONS OF A
BEAM

In this section, it is shown how the previous techniques can
be applied to stabilise the longitudinal axial vibrations in a
beam. Let us assume that the length of the bar is L > 0, and
denote by z ∈ [0, L] the spatial coordinate. As discussed
in [14], ϕ(t, z) denotes the longitudinal displacement of a
section of the beam from the unstressed configuration, and
v(t, z) = ∂ϕ

∂t (t, z) its velocity. The energy variables are the
linear momentum density p(t, z) = ρS(z)v(t, z), where ρ
is the material density and S(z) the section of the beam,
and the deformation ε(t, z) = ∂ϕ

∂z (t, z). Then, if the elastic
behaviour is linear, the total energy is:

H(p, ε) =

∫ L

0

1

2

[
p2(z)

ρS(z)
+ ES(z)ε2(z)

]
︸ ︷︷ ︸

=:H(p,ε,z)

dz (41)

being E the Young elasticity modulus. This leads to the
definition of the co-energy variables, namely the elastic
force acting on the cross section σ(t, z) = ∂H

∂ε (ε(t, z)) =
ES(z)ε(t, z), and its velocity v(t, z) = ∂H

∂p (p(t, z)) =
p(t,z)
ρS(z) . The port-Hamiltonian formulation of the system is
then

∂

∂t

(
ε(t, z)
p(t, z)

)
=

(
0 ∂

∂z
∂
∂z −D

)(
ES(z)ε(t, z)

1
ρS(z)p(t, z)

)
(42)

which is clearly in the form (1), being D > 0 the internal
friction coefficient.

The boundary input and output are selected as

u(t) =

(
v(t, 0)
σ(t, L)

)
y(t) =

(
−σ(t, 0)
v(t, L)

)
(43)

which leads to the energy balance

dH
dt

(ε(t), p(t)) = −
∫ L

0

D

[
p(t, z)

ρS(z)

]2

dz + yT(t)u(t)

The system (1) is then in impedance form, since the supplied
power through the boundary is equal to yTu.

From Corollary 3.1, we have that (42) admits the Brayton–
Moser formulation(
− 1
ES(z) 0

0 ρS(z)

)
︸ ︷︷ ︸

=:Q(z)

∂

∂t

(
σ
v

)
=

(
δP
δσ (σ, v)
δP
δv (σ, v)

)
=

(
−∂v∂z

∂σ
∂z −Dv

)

(44)
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with mixed-potential

P(σ, v) =
1

2

∫ L

0

(
v
∂σ

∂z
− σ∂v

∂z
−Dv2

)
dz (45)

for which the following balance relation holds true:

dP
dt

=

∫ L

0

[
− 1

ES(z)

(
∂σ

∂t

)2

+ ρS(z)

(
∂v

∂t

)2
]

dz+

+
1

2

[
∂σ

∂t
(z)v(z)− σ(z)

∂v

∂t
(z)

]L
0

(46)

Since the system is linear, without loss of generality, we
assume that the equilibrium is (σ?, v?) = (0, 0). From (44)
and (46), we see that P and Q cannot be used as is for
control design or to prove stability of equilibria. So, with
Proposition 4.1 in mind, the first step is to determine Pa
and Qa to be used in the Lyapunov analysis. Furthermore,
as discussed in Remark 4.3, to facilitate the control synthesis,
the idea is to have also Pa with a (local) minimum in (0, 0).
At first, note that P in (45) can be re-written as

P(σ, v) =

∫ L

0

[
− 1

2D

(
∂σ

∂z
−Dv

)2

+

+
1

2D

(
∂σ

∂z

)2
]

dz − 1

2
[σ(z)v(z)]

L
0 (47)

since D > 0. So, if in Proposition 4.1 we take λ > 0 and

Λ(z) =

(
ES(z) 0

0 1
ρS(z)

)
, we have that the term under the

integral in Pa defined as in (28) becomes

ES(z)

(
∂v

∂z

)2

+
λ

2D

(
∂σ

∂z

)2

+

+

(
1

ρS(z)
− λ

2D

)(
∂σ

∂z
−Dv

)2

which is always greater than 0 if λ < 2D
ρS(z) , for all

z ∈ [0, L], and positive, [20]. This property holds also
for Pa once the term that depends on the boundary con-
ditions (or on u and y) that appears in (47) is properly
cancelled. With Remark 4.2 in mind, in (36) we define
Ψa(σ, v) = λ

2 [σ(z)v(z)]
L
0 : such expression can be equiv-

alently re-written in terms of u and y because of (43).
The control system (35) is designed in order to render the

closed-loop system asymptotically stable. Let us now assume
that xc = (xc0, xcL) ∈ R2. The controller dynamics and the
functions Pc and Ψc in (36) have to be selected so that Pcl
meets the conditions of Proposition 4.2. A possible choice
is the following:

Ψc(σ, v) = λ

[
σ(0)v(0) +

gL
2
σ2(L)− d0

2
v2(0)

]
= − λ

2d0
[σ(0) + d0v(0)]

2
+

λ

2d0
σ2(0)+

+
λ

2
gLσ

2(L)

Pc(xc0, xCL) =
1

2

[
γ0ẋ

2
c0 + γLẋ

2
cL

]

where gL, d0, γ0 and γL are positive constants. If
(
γ0 0
0 γL

)(
ẋc0
ẋcL

)
=

(
−d0 0

0 −gL

)(
xc0
xcL

)
+ uc

yc =

(
xc0
xcL

) (48)

then from (34) with y? = 0, i.e. u = −yc and uc = y, it is
possible to verify that Pcl is positive and with a minimum
in the origin if λ < min

(
2D
ρS(z) ,

2d0
γ0

)
, for z ∈ [0, L], and

positive. The control system (48) is passive and, from a
physical point of view, it is equivalent to the interconnection
of a mass and a damper in series in z = 0, and to the parallel
of a spring and a damper in z = L since xc0 = −v(0) and
xcL = −σ(L). Passivity of (48) implies that the closed-loop
system is well-posed [13], [30], and that it makes sense to
evaluate Pcl along system trajectories. In particular, from
(36) and after some computations, we get that

dPcl
dt

=

∫ L

0

{
− λ

ES(z)

(
∂σ

∂t

)2

−

− [D − λρS(z)]

(
∂v

∂t

)2
}

dz−

− (d0 − λγ0)ẋ2
c0 − (gL + λγL)ẋ2

cL ≤ 0

with now 0 < λ < min
(

D
ρS(z) ,

d0
γ0

)
, z ∈ [0, L].

The functional Pcl and the closed-loop system satisfy the
conditions of Proposition 4.2. More precisely, as discussed
in [30], [31], the closed-loop dynamics can be written on
an extended state space in the form ξ̇ = Jeξ, where ξ =
(σ, v, xc0, xcL) and Je is a linear operator. Under standard
assumptions on the state space and on the domain of Je, it is
possible to prove that Je generates a contraction semigroup.
Moreover, due to the fact that (λeI − Je)−1 is compact for
some λe > 0, the orbits are compact, and the trajectories
converge to the largest invariant set contained in Ṗcl = 0,
i.e. to the set (40). From the previous balance relation and
from the analisys of the steady state configuration of the
closed-loop system, it is possible to check that such invariant
contains only the origin, which proves that the equilibrium
is asymptotically stable

VI. CONCLUSIONS AND FUTURE WORK

In this paper, for a given class of distributed port-
Hamiltonian systems with one dimensional spatial domain,
an equivalent Brayton–Moser formulation is presented. The
result is a gradient equation with respect to a mixed-potential
function that has the dimensions of power. Differently from
port-Hamiltonian systems in which the Hamiltonian is a
good Lyapunov function candidate, this mixed-potential is in
general not bounded from below and not decreasing along
system trajectories e.g. when the input is set equal to zero.
Then, to use such quantity for the synthesis of boundary
control laws, a procedure to generate a family of mixed-
potential functions suitable for the Lyapunov analysis is
presented. This is the starting point for computing the control
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action that stabilises a desired equilibrium. The procedure
has been presented with the help of a simple example,
i.e. the stabilisation of longitudinal vibrations in an elastic
beam. Future work deals with the extension of the proposed
Brayton–Moser formulation to a larger class of systems,
and in determining a more systematic procedure for the
control synthesis based on this new framework as did e.g
in [13]–[15] for distributed port-Hamiltonian systems within
the energy-shaping plus damping injection paradigm.
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