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Abstract— Recently the author has shown an analysis tech-
nique of general, not necessarily positive, LTI systems via
conversion to externally positive systems. More precisely, the
author established a construction method of an externally
positive system whose impulse response is given by the square
of the original LTI system to be analyzed. Then, it has been
proved that the H2 norm computation problem of a general
LTI system of order n can be reduced into the L∞-induced
norm computation problem of an externally positive system
of order n2. On the basis of these preceding results, in this
study, we show that the order of the externally positive system
can be reduced up to n(n + 1)/2 by using the elimination
and duplication matrices that are intensively studied by Jan R.
Magnus in the 80’s. In addition to the computational complexity
reduction in dealing with the H2 analysis, we show that such
construction of externally positive systems with reduced order
is quite effective in semidefinite-programming-based peak value
analysis of impulse responses of general LTI systems.
Keywords: system conversion, externally positive system, order
reduction, elimination/duplication matrices, peak value analysis
of impulse responses.

I. INTRODUCTION

In the field of control theory, analysis and synthesis
of linear time-invariant (LTI) positive systems have at-
tracted growing attention recently. In particular, convex-
optimization-based methods have been extensively studied
for internally positive systems, where an internally positive
system is characterized by the property that its state and
output are nonnegative for any nonnegative initial state and
nonnegative input [8], [11]. By making good use of the
internal positivity property, “strong” analysis and synthesis
conditions have been derived by, e.g., Rantzer [14], [15],
Blanchini et al. [1], Shen and Lam [17], Valcher and Misra
[20], Shorten and Mason [9], [13], [18], Tanaka and Langbort
[19], Briat [3], and Ebihara et al. [6], [7]. On the other
hand, an LTI system is said to be externally positive if its
output is nonnegative for any nonnegative input under zero
initial state [11], [8]. This is a milder requirement than that
of the internal positivity and can be restated equivalently
that the system impulse response is nonnegative. Due to this
nonnegativity property, it can be easily shown that the L∞-
induced norm of an LTI SISO externally positive system
can be given in a closed-form. It should be emphasized that
the exact computation of L∞-induced norm of a general
(i.e., not necessarily positive) system is very hard since we
need to integrate the absolute value of its impulse response.
When we deal with externally positive systems, we can skip
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the operation to take the absolute value since the impulse
response is inherently nonnegative, and this facilitates to
obtain a closed-form formula for the L∞-induced norm.

Motivated by this nice property of externally positive
systems, in [5], we studied analysis technique of general,
not necessarily positive, LTI systems via conversion to ex-
ternally positive systems. More precisely, we established a
Kronecker-product-based construction method of an exter-
nally positive system whose impulse response is given by
the square of the original LTI system to be analyzed. On the
basis of this system conversion, we showed that the H2 norm
computation problem of a general LTI system of order n can
be reduced into the L∞-induced norm computation problem
of an externally positive system of order n2. By this problem
reduction, we successfully derived novel closed-form formu-
las and semidefinite programs (SDPs) that characterize the
H2 norm of general LTI systems.

Even though the study in [5] has shown a potential ability
of positive system theory to handle non-positive systems, the
order n2 of the resulting externally positive system is much
higher than n of the original LTI system. This leads to the
increase of computational burden in carrying out associated
analysis and synthesis. With this drawback in mind, the goal
of this paper is to establish a systematic method to reduce
the order of the externally positive system. To this end, we
actively use nice properties of the elimination and duplication
matrices related to Kronecker product that are shown by
Magnus [12]. By applying the projections to the coefficient
matrices of the externally positive system by means of the
elimination and duplication matrices, we show that the order
can be reduced up to n(n+ 1)/2.

As another novel contribution over [5], in this paper, we
deal with peak value analysis of the impulse responses of
general LTI systems via proposed system conversion. To
the best of the author’s knowledge, there is no exact and
tractable method for the peak value analysis, and what is
available is only an SDP-based method that provides an
upper bound of the peak value [2], [16]. We show that, by
simply applying this SDP to the converted externally positive
system with reduced order, we can obtain sharper (no looser)
upper bounds.

We use the following notation. We denote by R and R+

the set of real and nonnegative real numbers, respectively.
The set of Hurwitz stable matrices of size n is denoted by
H

n. The set of symmetric, positive semidefinite, and positive
definite matrices of size n are denoted by S

n, Sn+, and S
n
++,

respectively. For A ∈ R
n×n, we denote by σ(A) the set of

the eigenvalues of A and define He{A} := A + AT . For a
vector v ∈ R

n, we denote by ‖v‖∞ its ∞-norm, i.e., ‖v‖∞ =
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maxi |vi|. For a vector function v : R+ → R
n, we denote

by ‖v‖∞ its L∞-norm, i.e., ‖v‖∞ = sup0≤t<∞ ‖v(t)‖∞.
For A1 ∈ R

n1×m1 and A2 ∈ R
n2×m2 , we denote by A1 ⊗

A2 their Kronecker product. For A1 ∈ R
n1×n1 and A2 ∈

R
n2×n2 , we denote by A1 ⊕ A2 their Kronecker sum, i.e.,

A1 ⊕A2 := A1 ⊗ In2
+ In1

⊗A2.

II. PRELIMINARIES AND REVIEW OF [5]

A. Preliminaries

Let us consider the LTI SISO system G described by

G :

{

ẋ(t) = Ax(t) +Bw(t),
z(t) = Cx(t),

A ∈ R
n×n, B ∈ R

n×1, C ∈ R
1×n.

(1)

The transfer function and the impulse response of the system
G are given respectively by

G(s) =

[

A B
C 0

]

= C(sI −A)−1B, (2)

g(t) = C exp(At)B (t ≥ 0). (3)

The definition of external positivity for the system G and a
related result are now reviewed.
Definition 1: [8], [11] The system G given by (1) is said
to be externally positive if its output is nonnegative for any
nonnegative input under zero initial state.
Proposition 1: [8], [11] The system G given by (1) is
externally positive if and only if its impulse response g given
by (3) is nonnegative, i.e., g(t) ≥ 0 (∀t ≥ 0).

On the other hand, the definitions of the H2 and the L∞-
induced norms of the system G are recalled as follows.
Definition 2: [21] Suppose the LTI system G given by (1)
is asymptotically stable, i.e., A ∈ H

n. Then, the H2 norm
of G is defined by

‖G‖2 :=

√

∫ ∞

0

g(t)2dt (4)

where g is the impulse response of G given by (3).
Definition 3: Suppose the LTI system G given by (1) is
asymptotically stable. Then, the L∞-induced norm of G is
defined by
‖G‖∞,∞ := sup

‖w‖∞≤1

‖z‖∞. (5)

Here, it is elementary to verify that

‖G‖∞,∞ =

∫ ∞

0

|g(t)|dt.

Namely, the L∞-induced norm ‖G‖∞,∞ coincides with the
L1 norm of the impulse response g. In particular, if the
system G is externally positive, the above integration can
be done by skipping the operation of taking the absolute
value and hence we readily obtain

‖G‖∞,∞ =

∫ ∞

0

g(t)dt = −CA−1B. (6)

The relationship between (4) and (6) clearly shows that, if
we can construct an externally positive and stable LTI system
Gsq with impulse response g2 from a given stable LTI system
G with impulse response g, we can compute the H2 norm
‖G‖2 by the closed-form formula (6) using the coefficient

matrices of Gsq. This is the motivation of the study in [5] and
the results there are quickly reviewed in the next subsection.

B. Conversion to Externally Positive Systems: Review of [5]

The next result is the key in the study of [5].
Proposition 2: [5] Let us consider the LTI SISO systems G
given by (1) with impulse response (3). Then, the LTI SISO
system Gsq defined by

Gsq(s) =

[

Asq Bsq

Csq 0

]

:=

[

A⊕A B ⊗ B
C ⊗ C 0

]

(7)

has the impulse response of the form
gsq(t) = g(t)2 (t ≥ 0). (8)

This proposition shows that we can construct an externally
positive and stable LTI system Gsq with impulse response
g2 from a given stable LTI system G with impulse response
g. Note that Asq = A ⊕ A ∈ H

n2

holds if and only if
A ∈ H

n holds. This can be readily verified since σ(Asq) =
{λi + λj : λi, λj ∈ σ(A)}, see [10] for details.

By (4), (8), (6), and (7), it can be readily seen that the
next result holds.

‖G‖2 =
√

‖Gsq‖∞,∞

=
√

−(C ⊗ C)(A⊕A)−1(B ⊗B)
(9)

Namely, we can obtain a closed-form formula for ‖G‖2 by
means of the easily available L∞-induced norm characteri-
zation of the externally positive system Gsq. The relationship
between this formula and the well-known Gramian-based
characterization, and a novel SDP-based characterization of
‖G‖2 using the SDP-based characterization of ‖Gsq‖∞,∞

are studied in detail in [5]. To summarize, the study in
[5] has shown a potential ability of positive system theory
to handle the H2 analysis of non-positive systems. It is
nonetheless true that the order n2 of the externally positive
system Gsq is much higher than n of the original system
G. This leads to the increase of computational burden in
carrying out associated analysis and synthesis. Therefore the
goal of this paper is to establish a systematic method to
reduce the order of the externally positive system Gsq.

III. ORDER REDUCTION VIA PROJECTION WITH

ELIMINATION AND DUPLICATION MATRICES

In this section we show a systematic method to reduce the
order of the system Gsq given by (7). It turns out that this can
be done by applying a projection to the coefficient matrices
of Gsq using the elimination and duplication matrices.

A. Elimination and Duplication Matrices

In this section, we recall the definition and basic properties
of the elimination and duplication matrices by following [12].

For the definition of the elimination and duplication ma-
trices, we need preliminaries. For A ∈ R

n×n, we denote
by A the lower triangular matrix derived from A by setting
all supradiagonal entries of A equal to zero, and dg(A)
the diagonal matrix derived from A by setting all supra-
and infradiagonal entries of A equal to zero. For A =
[ a1 · · · am ] ∈ R

n×m with its columns ai ∈ R
n (i =

1, · · · ,m), we denote by vec(A) ∈ R
mn the column-

expansion of A, i.e.,
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vec(A) :=
[

aT1 · · · aTm
]T

∈ R
mn.

We also introduce v(A) ∈ R
n(n+1)/2 for A ∈ R

n×n, which
is obtained from vec(A) by eliminating those entries aij with
i < j. For instance, if n = 3, we have

A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 ∈ R
3×3,

vec(A) = [ a11 a21 a31 a12 a22 a32 a13 a23 a33 ]
T
,

v(A) = [ a11 a21 a31 a22 a32 a33 ]
T
.

Then, the definition of the elimination and duplication ma-
trices can be given as follows.
Definition 4: [12]The elimination matrix L∈R

n(n+1)/2×n2

performs for every matrix matrix A ∈ R
n×n the trans-

formation Lvec(A) = v(A). The duplication matrix D ∈
R

n2×n(n+1)/2 performs for every matrix matrix A ∈ R
n×n

the transformation Dv(A) = vec(A+ A
T
− dg(A)).

For instance, if n = 3, we have

L =















1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1















,

D =



























1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



























.

We can confirm that LD = In(n+1)/2 and this in particular
implies that L is of full-row rank and D is of full-column
rank. It is also clear that for A ∈ S

n we have

DLvec(A) = vec(A). (10)

In the next lemma we summarize the important properties
of the elimination and duplication matrices in relation with
Kronecker product.
Lemma 1: For A ∈ R

n×n and B ∈ R
n×1, we have

DL(A⊗ A)D = (A⊗ A)D, (11a)
DL(A⊕ A)D = (A⊕ A)D, (11b)
DL(B ⊗ B) = B ⊗B. (11c)

In this lemma, the proofs for (11a) and (11b) are given in
[12]. The validity of (11c) readily follows from (10) if we
note that B ⊗ B = vec(BBT ) for B ∈ R

n×1.

B. Order Reduction of Gsq

The next theorem shows that we can reduce the order of
Gsq given by (7) by applying a projection to its coefficient
matrices using the elimination and duplication matrices.
Theorem 1: Let us consider the LTI SISO systems G given
by (1) with impulse response (3). Then, the LTI SISO system
Gsq,r defined by

Gsq,r(s) =

[

Asq,r Bsq,r

Csq,r 0

]

:=

[

L(A⊕ A)D L(B ⊗B)
(C ⊗ C)D 0

]

(

=

[

LAsqD LBsq

CsqD 0

])

(12)

has the impulse response of the form
gsq,r(t) = g(t)2(= gsq(t)) (t ≥ 0). (13)

Proof of Theorem 1: It is elementary to see that

exp(Asq,rt) = exp (L(A⊕ A)Dt)

=

∞
∑

i=0

(L(A⊕A)Dt)
i

i!

=

∞
∑

i=0

(L(A⊕A)D)
i
ti

i!

= L

∞
∑

i=0

(A⊕A)iti

i!
D

= L exp((A⊕ A)t)D
= L exp(At)⊗ exp(At)D

where we used (11b) to verify the fourth equality. It follows
that for t ≥ 0 we have

gsq,r(t)=Csq,r exp(Asq,rt)Bsq,r

= (C ⊗ C)DL(exp(At)⊗ exp(At))DL(B ⊗B)
= (C ⊗ C)DL(exp(At)⊗ exp(At))(B ⊗ B)
= (C ⊗ C)DL((exp(At)B)⊗ (exp(At)B))
= (C ⊗ C)((exp(At)B)⊗ (exp(At)B))
= (C exp(At)B)⊗ (C exp(At)B))
= g(t)2

where we used (11c) to verify the third and the fifth equali-
ties. This completes the proof.

From this theorem, we see that the order n2 of Gsq can
be reduced to n(n+1)/2. In other words, we can construct
an externally positive and stable LTI system Gsq,r of order
n(n + 1)/2 with impulse response g2 from a given stable
LTI system G of order n with impulse response g. Note
that Asq,r = L(A ⊕ A)D ∈ H

n(n+1)/2 holds if and only if
A ∈ H

n holds. This can be readily verified since σ(Asq,r) =
{λi + λj : λi, λj ∈ σ(A), i ≥ j }, see [12] for details.

On the basis of Theorem 1, we can derive another closed-
form characterization of the H2 norm ‖G‖2. Namely, by
replacing Gsq in (9) with Gsq,r, we readily obtain

‖G‖2 =
√

‖Gsq,r‖∞,∞

=
√

−(C ⊗ C)D(L(A⊕A)D)−1L(B ⊗ B).
(14)

This result shows that, for the closed-form characterization
of ‖G‖2, it is not necessarily to deal with larger size matrices
(A⊕ A,B ⊗ B,C ⊗ C) and it suffices to treat smaller size
matrices (L(A⊕A)D,L(B⊗B), (C⊗C)D). This essentially
leads to the reduction of the associated computational burden.

We finally note that in Theorem 1 we have shown that
the realization (Asq, Bsq, Csq) of Gsq given by (7) is always
non-minimal. From a mathematical system theoretic point of
view, it is then interesting if we can ensure the minimality
of (Asq,r, Bsq,r, Csq,r) of Gsq,r given by (12). Unfortunately
this is not true as we see in the next subsection.
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C. On the Minimality of Gsq,r: A Counter Example

Even if the realization (A,B,C) of G shown in (1) is
minimal, we cannot expect in general that the realization
(Asq,r, Bsq,r, Csq,r) of Gsq,r shown in (12) is minimal. This
fact can readily be seen by the following counter example.

Let us consider the controllable pair (A,B) with

A =





1 0 0
0 0 0
0 0 −1



 , B =





1
1
1



 .

This matrix A has eigenvalues λ1 = 1, λ2 = 0, and λ3 = −1.
For the pair (A,B), we have from (12) that

Asq,r =















2 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −2















, Bsq,r =















1
1
1
1
1
1















.

Then, it is clear that the pair (Asq,r, Bsq,r) is not controllable.
In this example, we see that the matrix Asq,r has eigenvalue
0 of geometric degree two, and this eigenvalue comes from
the eigenvalues of A as in λ1 + λ3 and λ2 + λ2. From this
example, we infer that the controllability under the proposed
system conversion can not be preserved in such a case where
a duplicated eigenvalue appears in Asq,r from sums of the
distinct eigenvalues of the original matrix A.

On the other hand, it is of course true that the proposed
system conversion can generate a minimal realization. A
most easy but non-trivial example would be the system G
with

A =

[

1 0
0 −1

]

, B =

[

1
1

]

, C =
[

1 1
]

.

This results in the system Gsq,r with

Asq,r =





2 0 0
0 0 0
0 0 −2



 , Bsq,r =





1
1
1



 , Csq,r =
[

1 2 1
]

.

Clearly this realization is minimal.

IV. PEAK VALUE ANALYSIS OF IMPULSE RESPONSES

Suppose the LTI SISO system G given (1) is stable, i.e.,
A ∈ H

n. In this section, we focus on its impulse response
given by (3) and analyze its peak value ‖G‖IP defined by

‖G‖IP := max
t∈[0,∞)

|g(t)|. (15)

Such peak value analysis is of practical use when dealing
with those control systems where there is a saturation in
control input or limitations in the magnitude of controlled
signals due to some physical reasons.

To the best of the author’s knowledge, there is no exact
and tractable method for the computation of ‖G‖IP defined
by (15). However, the next result is available for the upper
bound computation of ‖G‖IP.
Lemma 2: [2], [16], [4] Let us consider the LTI SISO
system G described by (1) and suppose G is stable, i.e.,
A ∈ H

n. Then, for a given γ > 0, we have (i) ⇐ (ii) with
respect to the following two conditions.

(i) ‖G‖IP < γ.
(ii) There exists P ∈ S

n
++ such that

PA+ATP ≺ 0, (16a)

BTPB < γ2, (16b)

P − CTC ≻ 0, (16c)
From this lemma, we see that an upper bound γ ≥ ‖G‖IP

can be obtained by solving the following SDP:

γ := inf
γ>0,P∈Sn++

γ subject to (16). (17)

Since γ is merely an upper bound of ‖G‖IP in general,
it is desirable if we can build novel SDPs in a systematic
fashion so that we can narrow the gap. The next theorem
shows that such SDPs are readily available by the proposed
conversion to externally positive systems.
Theorem 2: Let us consider the LTI SISO system G de-
scribed by (1) and suppose G is stable, i.e., A ∈ H

n. Then,
for a given γ > 0, we have (ii) ⇒ (iii) ⇔ (iv) ⇒ (i) with
respect to the conditions (i) and (ii) in Lemma 2 and (iii)
and (iv) given in the following.

(iii) There exists Psq ∈ S
n2

++ such that
PsqAsq +AT

sqPsq ≺ 0, (18a)

BT
sqPsqBsq < γ4, (18b)

Psq − CT
sqCsq ≻ 0 (18c)

where (Asq, Bsq, Csq) is given by (7).
(iv) There exists Psq,r ∈ S

n(n+1)/2
++ such that

Psq,rAsq,r +AT
sq,rPsq,r ≺ 0, (19a)

BT
sq,rPsq,rBsq,r < γ4, (19b)

Psq,r − CT
sq,rCsq,r ≻ 0 (19c)

where (Asq,r, Bsq,r, Csq,r) is given by (12).
In this theorem, it should be noted that the relations

(iii)⇒(i) and (iv)⇒(i) are obvious from Lemma 2 and the
basic fact that ‖G‖2IP = ‖Gsq‖IP = ‖Gsq,r‖IP. The proof
for the essential part (ii)⇒(iii)⇔(iv) is given in the appendix
section.

With Theorem 2 in mind, let us define γsq and γsq,r by

γsq := inf
γ>0,Psq∈Sn

2
++

γ subject to (18), (20)

γsq,r := inf
γ>0,Psq,r∈S

n(n+1)/2
++

γ subject to (19). (21)

Then, it is very clear from Theorem 2 that

γ ≥ γsq = γsq,r ≥ ‖G‖IP. (22)

Namely, we can obtain sharper (no looser) upper bounds
by solving the SDPs (20) and (21) built for the externally
positive systems Gsq and Gsq,r, respectively. Even though
these SDPs yield an exactly the same upper bound, the SDP
(21) is computationally much less demanding than the SDP
(20) since the size of the LMIs and the size of the variable are
reduced drastically. We illustrate this efficiency via numerical
examples in the next section.

V. NUMERICAL EXAMPLES

Let us consider the case where n = 8 and the coefficient
matrices of the system G given by (1) are
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A =























−1.68 1.17 −0.31 0.19 0.24 −0.46 1.67 0.24
1.16 −0.88 0.34 −0.89 −0.41 1.69 −0.63 1.26

−0.11 0.18 −1.18 −0.85 −0.72 −1.11 0.16 0.03
0.71 1.25 −0.84 −1.94 −0.07 1.40 0.33 −0.07
1.62 −0.76 −0.09 −1.05 −2.30 −0.61 0.87 −0.45

−1.43 −0.10 0.59 0.80 −0.04 −1.65 1.21 1.32
−1.28 −0.07 0.82 1.20 0.15 1.08 −2.36 −0.89
−0.57 −0.25 0.75 −1.17 −0.23 −0.99 0.14 −1.91























,

B =
[

−0.85 −0.15 −0.51 −0.70 −1.64 −0.06 −1.62 0.73
]T

,

C =
[

−0.49 −0.64 −0.28 −0.26 0.54 0.85 0.25 −0.14
]

.

Note that σ(A) = {−0.2023±1.5584j,−0.5121,−1.5995±
1.1244j,−3.2830 ± 0.8951j,−3.2182} and hence A ∈ H

8.
The impulse response of the system G is shown in Fig. 1.
From this figure, we see that ‖G‖IP ≈ 0.8613.

To confirm the validity of (22), we solved the SDPs (17),
(20), (21) and obtained the upper bounds, γ, γsq, γsq,r. In
Table I we show the results together with CPU time needed to
solve the corresponding SDPs. From Table I, we can confirm
that (22) holds. In particular, even though the SDPs (20) and
(21) yielded the same upper bound γsq = γsq,r = 0.9054,
it is very clear that we can solve the SDP (21) much faster
than (20). This clearly shows the effectiveness of the order
reduction of Gsq and the construction of the reduced-order
externally positive system Gsq,r by means of the elimination
and duplication matrices.

VI. CONCLUSION

In this paper, we focused on the construction of an exter-
nally positive system whose impulse response is given by the
square of that of a given LTI system of order n. On the basis
of our preceding result enabling the construction of such an
externally positive system of order n2, we showed that the
order can be reduced to n(n+ 1)/2 by making good use of
nice properties of the elimination and duplication matrices in
relation with Kronecker product. We finally illustrated that
such a conversion to reduced order externally positive system
is useful in computing upper bounds of the peak value of the
impulse response of general, not necessarily positive, LTI
SISO systems in a less conservative and efficient manner.
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APPENDIX I
PROOF OF THEOREM 2

It suffices to prove (ii)⇒(iii), (iii)⇒(iv), and (iii)⇐(iv). In
the following we use the very basic fact that Q ⊗ R ≻ 0
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holds for Q ≻ 0 and R ≻0. We also use (11b) and (11c)
frequently without clear indication.
Proof of Theorem 2:
(ii)⇒(iii) Suppose the LMI (16) is satisfied with P = Π ∈

S
n
++. Then, for Πsq := Π ⊗Π ∈ S

n2

, we have

ΠsqAsq +AT
sqΠsq = He {(Π ⊗Π)(A⊗ I + I ⊗ A)}

= Π ⊗ (ΠA+ATΠ) + (ΠA+ATΠ)⊗Π
≺ 0,

BT
sqΠsqBsq = (B ⊗B)T (Π ⊗Π)(B ⊗B)

= (BTΠB)(BTΠB)
< γ4,

Πsq − CT
sqCsq = Π ⊗Π − (C ⊗ C)T (C ⊗ C)

= Π ⊗Π − (CTC)⊗ (CTC)
≻ Π ⊗ (CTC)− (CTC)⊗ (CTC)
� (CTC)⊗ (CTC)− (CTC)⊗ (CTC)
= 0.

It follows that (18) in (iii) is satisfied with Psq = Πsq. This
completes the proof.
(iii)⇒(iv) Suppose the LMI (18) is satisfied with Psq =

Πsq ∈ S
n2

++. Then, for Πsq,r := DTΠsqD ∈ S
n(n+1)/2,

we have

Πsq,rAsq,r +AT
sq,rΠsq,r = He

{

DTΠsqDL(A⊕A)D
}

= He
{

DTΠsq(A⊕ A)D
}

= DTHe {ΠsqAsq}D
≺ 0,

BT
sq,rΠsq,rBsq,r = (B ⊗B)TLTDTΠsqDL(B ⊗ B)

= (B ⊗B)TΠsq(B ⊗B)
= BT

sqΠsqBsq

< γ4,

Πsq,r − CT
sq,rCsq,r = DTΠsqD −DT (C ⊗ C)T (C ⊗ C)D

= DT (Πsq − (C ⊗ C)T (C ⊗ C))D
= DT (Πsq − CT

sqCsq))D
≻ 0.

It follows that (19) in (iv) is satisfied with Psq,r = Πsq,r.
This completes the proof.
(iii)⇐(iv) The proof for this relation can not be done straight-
forwardly as in the preceding two cases since essentially we
have to construct a larger size matrix Psq ∈ S

n2

++ that satisfies
the LMI (18) from a smaller size matrix Psq,r ∈ S

n(n+1)/2
++

that satisfies the LMI (19). For the proof, suppose the LMI
(19) is satisfied with Psq,r = Πsq,r ∈ S

n(n+1)/2
++ . Then,

applying a congruence transformation with Ξsq,r = Π−1
sq,r ∈

S
n(n+1)/2
++ , we obtain

He{LAsqDΞsq,r} ≺ 0, (23a)

[

Ξsq,r LBsq

BT
sqL

T γ4

]

≻ 0, (23b)

CsqDΞsq,rD
TCT

sq < 1. (23c)

Here, if we define Ξsq,0 := DΞsq,rD
T ∈ S

n2

+ , we can
proceed from (23a) as

DHe{LAsqDΞsq,r}D
T � 0,

⇔ He{DLAsqDΞsq,rD
T } � 0,

⇔ He{AsqDΞsq,rD
T } � 0,

⇔ He{AsqΞsq,0} � 0.

(24)

Similarly, from (23b), we obtain
[

DΞsq,rD
T DLBsq

BT
sqL

TDT γ4

]

� 0,

⇔

[

Ξsq,0 Bsq

BT
sq γ4

]

� 0.

(25)

It follows that

AsqΞsq,0 + Ξsq,0A
T
sq � 0, (26a)

[

Ξsq,0 Bsq

BT
sq γ4

]

� 0, (26b)

CsqΞsq,0C
T
sq < 1. (26c)

Here, since Asq ∈ H
n2

, there exists Ξsq,ε ∈ S
n2

++ for ε > 0
such that

AsqΞsq,ε +Ξsq,εA
T
sq + εIn2 = 0.

Then, if we define Ξsq := Ξsq,0 +Ξsq,ε ∈ S
n2

++, there exists
(sufficiently small) ε > 0 such that

AsqΞsq + ΞsqA
T
sq ≺ 0, (27a)

[

Ξsq Bsq

BT
sq γ4

]

≻ 0, (27b)

CsqΞsqC
T
sq < 1. (27c)

By applying a congruence transformation with Πsq = Ξ−1
sq ∈

S
n2

++, we obtain

ΠsqAsq +AT
sqΠsq ≺ 0, (28a)

BT
sqΠsqBsq < γ4, (28b)

Πsq − CT
sqCsq ≻ 0. (28c)

It follows that (18) in (iii) is satisfied with Psq = Πsq. This
completes the proof.
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