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Abstract— For a broad class of infinite-dimensional systems,
we characterize input-to-state practical stability (ISpS) using
the uniform limit property and in terms of input-to-state
stability. We specialize our results to the systems with Lipschitz
continuous flows and evolution equations in Banach spaces.
Even for the special case of ordinary differential equations our
characterizations of ISpS via the limit property are novel and
improve existing criteria for ISpS.
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I. INTRODUCTION

The concept of input-to-state stability (ISS), introduced
in [2], has become indispensable for various branches of
nonlinear control theory, such as robust stabilization of
nonlinear systems [3], design of nonlinear observers [4],
analysis of large-scale networks [5], [6], etc.

However, in many cases it is impossible (as in quantized
control) or too costly to construct a feedback, ensuring ISS
behavior of the closed loop system. To address such applica-
tions, a relaxation of the ISS concept has been proposed in
[5], called input-to-state practical stability (ISpS, practical
ISS). This concept is extremely useful for stabilization of
stochastic control systems [7], control under quantization
errors [8], [9], study of interconnections of nonlinear systems
by means of small-gain theorems [5], [10], etc.

Criteria for ISS in terms of other stability properties are
among foundational theoretical results in ISS of ordinary
differential equations (ODEs). In [11] Sontag and Wang
have proved an ISS superposition theorem, saying that ISS
is equivalent to the limit property combined with a local
stability. Characterizations of ISS greatly simplify the proofs
of other important results, such as small-gain theorems for
ODEs [6] and hybrid systems [12], non-coercive ISS Lya-
punov theorems [13], relations between ISS and nonlinear
L2→ L2 stability [14], to name a few examples.

Characterizations of ISS for ODEs in [11] heavily exploit
the topological structure of an underlying state space Rn,
as well as a special type of dynamics (ODEs). Trying
to generalize these criteria to infinite-dimensional systems,
we face fundamental difficulties: closed bounded balls are
never compact in infinite-dimensional normed linear spaces,
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nonuniformly globally asymptotically stable nonlinear sys-
tems do not necessarily have bounded reachability sets, and
even if they do, this still does not guarantee uniform global
stability [13]. These difficulties have been overcome in a
recent work [13], where characterizations of ISS have been
developed for a general class of control systems, encompass-
ing evolution PDEs, differential equations in Banach spaces,
time-delay systems, switched systems, ODEs, etc. The results
in [13] naturally extend criteria for ISS of ODEs developed
in [11]. New notions and results obtained in [13] establish
a solid background for a solution of further problems. The
concept of a uniform limit has been useful in the theory of
non-coercive Lyapunov functions [13].

Despite a great importance of practical ISS for nonlinear
control theory, much less is known about characterizations
of practical ISS even in ODE setting. Sontag and Wang have
shown in [11, Proposition VI.3] that an ODE system is ISpS
iff it is compact ISS, i.e., there is a compact 0-invariant set
A ⊂ Rn so that the system has a uniform asymptotic gain
(UAG) w.r.t. A . This is an interesting characterization, but
UAG itself is a quite strong property and it may be hard
to check it. It would be desirable to obtain criteria for ISS
in terms of weaker properties as limit property, which will
be as powerful as characterizations of ISS given in [11] for
ODEs and in [13] for general infinite-dimensional systems.

In this paper we develop such criteria for practical ISS
for a broad class of infinite-dimensional systems. The un-
derstanding of the nature of practical ISS will be beneficial
for the development of quantized and sample data controllers
for infinite-dimensional systems and will give further insights
into the ISS theory of infinite-dimensional systems, which is
currently a hot topic [15], [16], [17], [18], [19], [13].

We prove in Section IV that a nonlinear infinite-
dimensional control system Σ possessing bounded reacha-
bility sets is practically ISS if and only if there is a bounded
subset A of a state space so that Σ has a uniform limit
property (ULIM) w.r.t. A . This criterion can be used to prove
ISpS of control systems. On the other hand, we show that
any ISpS control system has a so-called complete uniform
asymptotic gain property (CUAG), which is stronger than
uniform asymptotic gain property (UAG) as defined in [11],
[13].

An important difference of this criterion of ISpS to the
criteria of ISS proved in [11], [13] is that it does not involve
any kind of stability w.r.t. the set A (which is necessary for
ISS), which significantly simplifies verification of the ISpS
property.
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We base ourselves on machinery developed in [13] for
characterization of ISS of general infinite-dimensional sys-
tems, in particular, we use the notion of the uniform limit
and results from [13] related to this property. Additionally,
we develop two further technical results which are of inde-
pendent interest.

Firstly, we introduce a CUAG property and show in
Proposition 3.2 that a control system possesses this property
if and only if it has a UAG property and if its finite time
reachability sets are bounded.

Secondly, using this CUAG characterization we show in
Proposition 4.2 that if a system has uniform limit property
w.r.t. certain bounded set A of a state space X and if this
system has bounded finite time reachability sets, then there
is a set B ⊃A so that Σ has a (much stronger than ULIM)
CUAG property w.r.t. B. In our proof we construct a family
of such sets.

These results can be refined for special classes of system as
systems with Lipschitz continuous flows or semilinear equa-
tions in Banach spaces. Even specialized to ODE systems
our characterizations of practical ISS via the limit property
are novel. In Section V we show that an ODE system Σ

is practically ISS ⇔ there is a bounded set A so that Σ

has a limit property w.r.t. A ⇔ Σ is compact ISS. This
recovers [11, Proposition VI.3] and considerably strengthens
[11, Lemma I.4].

Due to the space limitations we omit most of the proofs.
They can be found in the journal version of this article [1].

A. Notation

The following notation will be used throughout these
notes. Denote R+ := [0,+∞). For an arbitrary set S and n∈N
the n-fold Cartesian product is Sn := S× . . .×S.

Let X be a normed linear space with a norm ‖·‖ and let A
be a nonempty set in X . For any x ∈ X we define a distance
from x ∈ X to A by ‖x‖A := infy∈A ‖x− y‖. Define also
‖A ‖ := supx∈A ‖x‖. The open ball in a normed linear space
X with radius r around A ⊂ X is denoted by Br(A ) :=
{x ∈ X : ‖x‖A < r}. For short, we denote Br := Br({0}).
Similarly, Br,U := {u ∈U : ‖u‖U < r}. The closure of a set
S ⊂ X w.r.t. norm ‖ · ‖ is denoted by S. With a slight abuse
of notation we define B0(A ) := A and B0,U = {0}.

For the formulation of stability properties the following
classes of comparison functions are useful:

K := {γ : R+→ R+ | γ is continuous, strictly
increasing and γ(0) = 0} ,

K∞ := {γ ∈K | γ is unbounded} ,
L := {γ : R+→ R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0},
K L := {β : R+×R+→ R+ | β is continuous,

β (·, t) ∈K , β (r, ·) ∈L , ∀t ≥ 0, ∀r > 0} .
II. PRELIMINARIES

In this paper, we consider abstract axiomatically defined
time-invariant and forward complete systems:

Definition 2.1: Consider the triple Σ = (X ,U ,φ) consist-
ing of

(i) A normed linear space (X ,‖ ·‖), called the state space,
endowed with the norm ‖ · ‖.

(ii) A set of input values U , which is a nonempty subset
of a certain normed linear space.

(iii) A space of inputs U ⊂{ f : R+→U}, 0∈U endowed
with a norm ‖ · ‖U satisfying two axioms:
The axiom of shift invariance states that for all u ∈U
and all τ ≥ 0 the time shift u(·+τ) belongs to U with
‖u‖U ≥ ‖u(·+ τ)‖U .
The axiom of concatenation is defined by the require-
ment that for all u1,u2 ∈ U and for all t > 0 the
concatenation of u1 and u2 at time t

u(τ) :=

{
u1(τ), if τ ∈ [0, t],
u2(τ− t), otherwise,

(1)

belongs to U . Furthermore, if u2 ≡ 0, then
‖u‖U ≤ ‖u1‖U .

(iv) A transition map φ : R+×X×U → X .

The triple Σ is called a (forward complete) control system,
if the following properties hold:
(Σ1) Forward completeness: for every (x,u)∈X×U and for

all t ≥ 0 the value φ(t,x,u) ∈ X is well-defined.
(Σ2) The identity property: for every (x,u) ∈ X×U it holds

that φ(0,x,u) = x.
(Σ3) Causality: for every (t,x,u) ∈ R+×X ×U , for every

ũ ∈ U , such that u(s) = ũ(s), s ∈ [0, t] it holds that
φ(t,x,u) = φ(t,x, ũ).

(Σ4) Continuity: for each (x,u) ∈ X ×U the map t 7→
φ(t,x,u) is continuous.

(Σ5) The cocycle property: for all t,h ≥ 0, for all x ∈ X ,
u ∈U we have φ(h,φ(t,x,u),u(t + ·)) = φ(t +h,x,u).

Remark 2.2: In compare to the paper [13], upon which
this note is based, we impose here an additional requirement
on the space U , that the concatenation of any input u with a
zero input has the norm which is not larger than ‖u‖U . This
condition is satisfied by most of the ”natural” input spaces.

Definition 2.3: Let a control system Σ = (X ,U ,φ), a real
number s ≥ 0 and A ⊂ X , A 6= /0 be given. A is called s-
invariant if φ(t,x,u) ∈A for all t ≥ 0, x ∈A and u ∈ Bs,U .

The central notion of this paper is:
Definition 2.4: A control system Σ = (X ,U ,φ) is called

(uniformly) input-to-state practically stable (ISpS) w.r.t. a
nonempty set A ⊂ X , if there exist β ∈K L , γ ∈K∞ and
c > 0 s.t. for all x ∈ X , u ∈U and t ≥ 0 the following holds:

‖φ(t,x,u)‖A ≤ β (‖x‖A , t)+ γ(‖u‖U )+ c. (2)

If ISpS property w.r.t. A holds with c := 0, then Σ is
called input-to-state stable (ISS) w.r.t A .

In what follows we always assume that the set, w.r.t. which
the stability property is considered (usually denoted by A )
is always nonempty.

We are interested in ISpS w.r.t. bounded subsets of X :
Definition 2.5: A control system Σ = (X ,U ,φ) is called

ISpS, if there is a bounded set A ⊂ X s.t. Σ is ISpS w.r.t.
A .

Our aim is to prove criteria for practical ISS in terms of
more basic stability properties, which are listed next:
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Definition 2.6: A control system Σ = (X ,U ,φ)

• has bounded reachability sets (BRS), if

C > 0, τ > 0 ⇒ sup
‖x‖≤C, ‖u‖U ≤C, t∈[0,τ]

‖φ(t,x,u)‖< ∞.

• has the uniform asymptotic gain (UAG) property w.r.t. A ⊂
X , if there exists a γ ∈K∞ such that for all ε,r > 0 there
is a τ = τ(ε,r)< ∞ s.t. for all u ∈U and all x ∈ Br(A )

t ≥ τ ⇒ ‖φ(t,x,u)‖A ≤ ε + γ(‖u‖U ). (3)

• has the limit property (LIM) w.r.t. A ⊂ X if there is a γ ∈
K∞: for all x∈ X , u∈U and ε > 0 there is a t = t(x,u,ε):

‖φ(t,x,u)‖A ≤ ε + γ(‖u‖U ).

• has the uniform limit property (ULIM) w.r.t. A ⊂ X , if
there exists γ ∈ K∞ so that for all ε > 0 and all r > 0
there is a τ = τ(ε,r) s.t. for all u ∈U :

‖x‖A ≤ r ⇒ ∃t ≤ τ(ε,r) : ‖φ(t,x,u)‖A ≤ ε + γ(‖u‖U ). (4)
Remark 2.7: For ODEs forward completeness implies

BRS property, see [20, Proposition 5.1]. For ∞-dimensional
systems this is not always the case (see [13, Example 2]).

Note that trajectories of ULIM systems do not only ap-
proach the ball Bγ(‖u‖U )(A ) (as trajectories of LIM systems
do), but they do it uniformly. Indeed, the time of approach-
ability τ depends only on the norm of the state and ε and
does not depend on he state itself.

III. COMPLETE UNIFORM ASYMPTOTIC GAINS

Uniform asymptotic gain property assures that the trajec-
tories possess a uniform convergence rate. However, UAG
property per se does not guarantee that the solutions possess
any kind of uniform global bounds (one can construct
examples of control systems, illustrating this fact, using ideas
from [13, Example 2]). Since it is often desirable both to
have uniform attraction rates as well as uniform bounds on
solutions, we introduce (motivated by [21, Definition 4.1.3],
where a similar concept with γ = 0 has been employed) a
new notion:

Definition 3.1: We say that a control system Σ satisfies
the completely uniform asymptotic gain property (CUAG)
w.r.t. A ⊂ X , if there are β ∈K L , γ ∈K∞ and C > 0 s.t.
for all x ∈ X , u ∈U , t ≥ 0 it holds that:

‖φ(t,x,u)‖A ≤ β (‖x‖A +C, t)+ γ(‖u‖U ). (5)
The next proposition gives a useful criterion for CUAG.
Proposition 3.2: Let A ⊂ X be a bounded set. A control

system Σ is CUAG w.r.t. A ⇔ Σ is BRS and UAG w.r.t. A .
For our purposes CUAG is important due to the following
Proposition 3.3: If there is a bounded A ⊂ X so that a

control system Σ is CUAG w.r.t. A , then Σ is ISpS.

IV. CHARACTERIZATIONS OF ISPS

The main result of this contribution is the following
characterization of ISpS:

Theorem 4.1: Let Σ be a control system as in Defini-
tion 2.1. The following statements are equivalent:

(i) Σ is ISpS

(ii) There is a bounded 0-invariant set A ⊂ X so that Σ is
CUAG w.r.t. A .

(iii) Σ is BRS and there is a bounded set A ⊂ X so that Σ

is ULIM w.r.t. A .
Theorem 4.1 can be used in two ways. On the one hand, to

prove ISpS of a system, we can merely check the conditions
in item (iii) of Theorem 4.1. On the other hand, if a certain
system is ISpS, item (ii) shows that it enjoys also a CUAG
property w.r.t. a certain bounded 0-invariant set.

The proof of this fact relies on three results: characteri-
zations of ISS for infinite-dimensional systems achieved in
[13], the results on the novel CUAG property in Section III
and on the novel technique of which can be called ”improv-
ing stability properties via enlarging of the attracting set”,
which we briefly describe next.

Assume that a control system Σ is ULIM w.r.t a certain set
A ⊂ X . Then it is clear that Σ is ULIM w.r.t. any B ⊃A .
However, it may exist certain subsets of X w.r.t. which Σ has
better properties than merely ULIM. In this section we show
that this is indeed the case provided Σ is BRS.

Assume that Σ = (X ,U ,φ) is given. For any A ⊂ X , any
ε > 0 and any γ ∈K∞ define

Aε,γ :={φ(t,x,u) : t ∈ R+,x ∈ Bε(A ),‖u‖U ≤ γ
−1( ε

2 )}. (6)

Note that from the identity axiom (Σ2), for each ε > 0
and any γ ∈ K∞ it holds that A ⊂ Bε(A ) ⊂ Aε,γ . The
construction of the sets Aε,γ is motivated by the notion of
the positive prolongation of a set, see [22].

The next proposition is the central technical result needed
to show Theorem 4.1.

Proposition 4.2: Assume that Σ is a BRS control system
and Σ has the ULIM property w.r.t. a bounded (not neces-
sarily 0-invariant) set A ⊂ X , with γ ∈K∞ as in (4). Then
for any ε > 0 the set Aε,γ is bounded, 0-invariant and Σ is
CUAG w.r.t. Aε,γ .

Proof: The proof goes step by step: first we show
boundedness of Aε,γ , then 0-invariance of Aε,γ and finally
we show that Σ is UAG w.r.t. Aε,γ . Since Σ is BRS, by
Proposition 3.2 it follows that Σ is CUAG w.r.t. Aε,γ .

Finally, we can prove the main result of this paper:
Proof: (of Theorem 4.1)

(i)⇒ (ii). Assume, that Σ is an ISpS control system. Then
there are β ∈K L , γ ∈K∞ and c > 0 so that for all x ∈ X ,
t ≥ 0 and u ∈U we have

‖φ(t,x,u)‖ ≤ β (‖x‖, t)+ γ(‖u‖U )+ c. (7)

For any y ∈ X and any c > 0 it holds that ‖y‖Bc(0)
=

max{‖y‖− c,0} and ‖y‖ ≤ ‖y‖Bc(0)
+ c and we infer from

(7) for φ(t,x,u) /∈ Bc(0) that

‖φ(t,x,u)‖Bc(0)
≤ β (‖x‖Bc(0)

+ c, t)+ γ(‖u‖U ). (8)

Otherwise, if φ(t,x,u)∈ Bc(0), then ‖φ(t,x,u)‖Bc(0)
= 0 and

(8) also holds. Thus Σ is CUAG w.r.t. Bc(0) (however, Bc(0)
does not have to be 0-invariant). According to Proposition 4.2
there is a bounded 0-invariant set A so that Σ is CUAG w.r.t.
A .
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(ii) ⇒ (iii). Clear.
(iii) ⇒ (i). Proposition 4.2 implies that there is a bounded

set A ⊂ X so that Σ is CUAG w.r.t. A . Proposition 3.3
shows ISpS of Σ.

V. ISPS OF ODE SYSTEMS

The criteria for ISpS can be strengthened for some partic-
ular classes of systems as systems with Lipshcitz continuous
flows, semilinear equations in Banach spaces etc. Due to the
space limitations we do not discuss these results here and
refer to the full journal version of this article [1]. Instead we
would like to stress our attention on the results for systems of
ODEs. Even specialized to this class of systems our results
are stronger than other ones existing in the literature.

Consider the system given by

ẋ = f (x,u), (9)

where f : Rn ×Rm → Rn is locally Lipschitz continuous
w.r.t. the first argument and inputs u belong to the set
U := L∞(R+,Rm) of Lebesgue measurable globally essen-
tially bounded functions with values in Rm. For this class
of systems the characterizations of ISpS developed in the
previous sections can be considerably strengthened.

The following result has been shown in [13] for A = {0}
on the basis of [11, Corollary III.3]. The proof for general
bounded A is analogous.

Proposition 5.1: Consider a system (9) with U as above.
Let A ⊂ Rn be any bounded set. Then Σ is ULIM w.r.t. A
if and only if Σ is LIM w.r.t. A .

Sontag and Wang defined in [11, Section VI] the following
concept:

Definition 5.2: (9) is called compact ISS, if there is a
compact 0-invariant set A ⊂ Rn s.t. (9) is UAG w.r.t. A .

Criteria for practical ISS of a system (9) take a particularly
simple form:

Corollary 5.3: Let (9) be forward complete. The follow-
ing statements are equivalent:

(i) (9) is ISpS
(ii) For any s> 0 there is a compact s-invariant set A ⊂Rn:

(9) is ISS w.r.t. A .
(iii) (9) is compact-ISS.
(iv) There is a bounded set A ⊂ Rn: (9) is LIM w.r.t. A .

Proof: The proof is based on several results which are
specific for ODE systems:
• For ODEs LIM and ULIM properties coincide, see [13]
• Forward complete systems (9) are also BRS, see [20,

Proposition 5.1].
• The fact that 0-invariant spaces constructed in Proposi-

tion 4.2 are s-invariant for a suitable s > 0. This in turn
helps to show a kind of robustness of these sets.

We omit the details and again refer to [1].
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