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Abstract— We present a compressive sensing approach for
sparse regression problem and using the ideas from con-
centration of measure, extend it to case where the samples
are generated from a Markov chain. This is achieved by
constructing a matrix from samples such that it is suitable for
reconstructing sparse parameter vectors via l1-minimization.

Index Terms— Input and excitation design, Recursive identi-
fication, Sparse Regression, Compressive Sensing, Subgaussian-
ity.

I. INTRODUCTION

We consider the problem of sparse linear regression where,
given pair samples (Xn, Yn), we aim to fit a model Yn =
AXn+ noise, where A is sparse. We do so using ideas from
compressive sensing. The main aim of compressive sensing
is to reconstruct a sparse vector from linear measurements of
the vector such that the number of observed measurements m
is significantly smaller than the dimension n of the original
vector (See [2], [3]). The problem of reconstruction can
be formulated as an l1-minimization problem. In classical
compressive sensing, however, the paradigm is y = Ax+
noise, where x is the unknown sparse vector to be recon-
structed, y the observed quantity and A the measurement
matrix chosen to satisfy with high probability the so called
‘Restricted Isometry Property (RIP)’. In [1], [8], [9], RIP is
proved for different types of matrices. We interchange the
roles of A and x so that {Xn} serves as a surrogate for
measurement matrix and A the unknown sparse entity to be
reconstructed. The key step is to aggregate {Xn} suitably
so that the subgaussian concentration effect kicks in and the
desired variant of RIP follows from the known properties
of subgaussian matrices. In other words, we use the input
suitably to come up with subgaussian matrices X and then
invoke the notions of compressive sensing to estimate the
rows of matrix A.

We consider matrices such that the entries are either i.i.d.
or are sampled from a Markov chain. In the latter case, the
entries or even the rows (or the columns) of the matrix are
not independent. Loosely speaking, one can prove that a
function f : Rd 7→ R is concentrated around its mean if the
fluctuations in every coordinate (with rest of the coordinates
fixed) are bounded. This phenomenon has been studied in
detail when f is a function of independent (or weakly
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dependent) variables. Recently in [4], [7], functions defined
on irreducible aperiodic Markov chains satisfying certain
conditions (viz. geometric ergodicity) have been studied and
certain concentration results have been obtained. These can
be used to prove RIP for such matrices.

While the idea of using compressive sensing for sparse
regression is not new (See, e.g., [6]), our main contribution is
the observation that a judicious aggregation of input samples
to shape their distribution can yield significant performance
enhancement, in both IID and Markov samples.

II. BASIC SET-UP

Suppose Y = AX where A ∈ Rm×n is a sparse matrix
- by this we mean that each row of A (denoted by Ai for
i = 1, . . . ,m) is sparse, X is a vector in Rn and Y ∈ Rm.
Consider the classical linear regression problem

min
A∈Rm×n

‖Y −AX‖2

We use ideas from compressive sensing to estimate Ai for
i = 1, . . . ,m.

We can write Y T = XTAT (where MT denotes the
transpose of a matrix M ). By yj we denote the jth entry
of Y T . The problem of estimating the parameters A now
transforms into that of estimating sparse vectors Aj from
the m equations

yj = XTAj for j = 1, . . . ,m. (1)

Let [m] denote the set {1, . . . ,m}. For each j ∈ [m], given
a sufficiently large number of noisy samples of {yj , X}, we
would like to find a sparse vector A∗j such that

yj ≈ XA∗j ∀j

where yj denotes the vector (y1j , . . . , y
k
j ) of k samples of

jth entry of Y T and by abuse of notation X also denotes
the matrix in Rk×n such that each row is a sample of the
vector X .

Throughout the paper ‖ · ‖1 denotes the l1 norm and ‖ · ‖
denotes the l2 norm over R.

III. COMPRESSIVE SENSING APPROACH

Fix j ∈ [m]. In the above scenario, suppose we have a
large sample (l × k for l, k > 0) of S = {yij , Xi} and
i = 1, . . . , lk. Let Yj = (ȳ1j , . . . , ȳ

k
j ), where each entry is

averaged over l sample points from S.
Let X̄ denote the matrix with k rows where each row is

obtained by averaging over l samples from S. Assume that
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the samples are drawn from distributions with zero mean and
variance I .

Given that that Aj is sparse for every j, according to
the theory of compressive sensing, the above problem of
estimating Aj can be framed as an l1-minimization:

minimize
z∈Rn

‖z‖1 subject to ‖Yj − X̄z‖ ≤ η (2)

where η > 0 denotes the bound on measurement error. For
X̄ to be suitable for reconstruction of Aj’s via compressive
sensing, it suffices to show that the matrix X̄ satisfies the
restricted isometry property.

Remark: We assume, without loss of generality, Yj , X to
be zero-mean and X with identity covariance matrix. Our
analysis will be under these conditions. More generally,
deviation from this will affect only the constants in the
estimates and not how they scale with the number of samples.
Based on above discussion, we propose the following algo-
rithm:

Algorithm 1 Sparse regression via compressing sensing
Given: {Yi, Xi} ← large sample set.

• Xj ∈ Rk×n, 1 ≤ j ≤ l: Obtained by putting Xi

together as rows of a matrix.

• X̄ = 1
l

l∑
j=1

Xj (Averaging the matrix X over l

samples).

• l1-minimization:

minimize
z∈Rn

‖z‖1 subject to Yj = X̄z.

Output: Estimated vector A∗j .

A. Main result

In this section, we prove some theoretical results to justify
the reconstruction scheme illustrated via simulations in the
next section.

Definition 3.1: Let M ∈ Rk×n be a random matrix such
that the entries of M are independent mean-zero subgaussian
random variables with variance 1 and common subgaussian
parameters α, β, that is

P (|Mij | ≥ t) ≤ βe−αt
2

∀ t > 0, i ∈ [k], j ∈ [n]

then M is called a subgaussian random matrix.

It is known that for a suitable choice of k, subgaussian
random matrices satisfy the restricted isometry property with
high probability.

Definition 3.2 (Subgaussian Random Vector): If, for all
v ∈ Rn with ‖v‖ = 1, the random variable 〈Y, v〉 is sub-
gaussian with subgaussianity parameters being independent
of v, then Y is called a subgaussain random vector.

From the theory of compressive sensing, we know that
a matrix M ∈ Rk×n is “good” for reconstruction of an
s-sparse vector in Rn if it satisfies the restricted isometry
property (RIP) with high probability:

Definition 3.3 (Restricted Isometry Property): The sth
restricted isometry constant δs = δs(A) of a matrix
A ∈ Rm×n is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22

for all s-sparse vectors x ∈ Rn. We say that A satisfies
the restricted isometry property if δs is small for moderately
large s.

Theorems 9.9 and 9.11 in [5] imply that to prove RIP
property for a matrix M , it is sufficient to prove that it
satisfies the following concentration inequality

P
(
|k−1‖Mx‖2 − ‖x‖2| ≥ t‖x‖2

)
≤ 2 exp(−ct2k) (3)

A simple application of Bernstein’s inequality shows that
the above concentration inequality holds for a matrix with
subgaussian rows.

B. Independent samples

We motivate our results by first considering the simple
case of independent samples. Hoeffding lemma implies that
if the entries of the matrix X are bounded, identically
distributed and are sampled independently, then the resulting
matrix is subgaussian and is therefore suitable for reconstruc-
tion of sparse vectors. However, averaging over the sam-
ples for each entry should improve the reconstruction error
specially for high dimensional vectors. This is illustrated in
Theorem 3.4 below. The sampling process ensures that we
get subgaussian concentration for each entry and that leads us
to conclude that X̄ satisfies the restricted isometry property
with high probability. A precise bound can be obtained by
combining known results as follows:

Theorem 3.4: Let each sample of Xij be i.i.d. (with zero
mean and variance 1) such that a ≤ Xij ≤ b. Note that by
construction the random variables are zero mean and with
variance 1. Then, there exist C1, C2 depending only on l, b, a
such that if, for ε ∈ (0, 1),

k ≥ C1s log(en/s) + C2 ln(2ε−1)

then with probability at least 1 − ε every s-sparse vector v
is recovered from y = X̄v via l1-minimization.

Proof: Recall that each entry of X̄ , denoted by X̄ij , is
averaged over l samples (and is zero-mean by construction).
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Since each sample is independent, by Hoeffding’s inequality,
we have,

P
(
|X̄ij | ≥ t

)
≤ 2 exp

(
− 2lt2

(b− a)2

)
(4)

This means that X̄ is a subgaussian random matrix. The
statement then follows from Theorem 9.2 [5].

Remark: Averaging each entry over l samples helps in im-
proving the subgaussian concentration bound by a factor of l.
The improvement is illustrated in simulations in section IV.

In real problems, it is inconceivable to measure a signal
with complete precision. This means that the measurement
vector y is corrupted with some measurement error. However,
from Theorem 9.13 [5], we know that if a matrix satisfies
restricted isometry property, it is suitable for a robust recov-
ery via l1-minimization. Thus, X̄ works as a recovery matrix
even when ‖y − X̄v‖ ≤ η for some η > 0.

By using generalizations of Hoeffding’s inequality, we can
obtain similar results under alternative hypotheses. For exam-
ple, if the sample generated for X̄ comes from a martingale
difference sequence, we can use Azuma inequality to prove
a similar reconstruction result.

C. Dependent Samples

Definition 3.5 (Isotropic random vector): Given a ran-
dom vector Y ∈ Rn with E[Y ] = 0, Y is called isotropic if
E|〈Y, v〉|2 = ‖v‖2 for all v ∈ Rn

In Theorem 3.4, since we have independent entries with
zero mean and variance 1, the isotropic property comes for
free. More generally, the results below hold modulo a scale
factor for constants as pointed at earlier. This is because
any distribution with finite second moment can be rendered
isotropic by an affine transformation.

Theorem 3.6 (Theorem 5.71, [9]): Let B = (bij) be an
k × n matrix whose rows Bi are independent isotropic
random vectors in Rn. Let R > 0 be such that all entries
|bij | ≤ R almost surely. Then the normalized matrix B̄ =
1√
k
B satisfies the following for k ≤ n, for every sparsity

level 1 < s ≤ n and every number δ ∈ (0, 1):

if k ≥ Cδ−2s log n log2(s) log(δ−2s log n log2 s)

then E[δs(B̄)] ≤ δ. Here, C = CR > 0 may depend only
on R.

Note that there is no averaging here. This means that matrices
with rows sampled independently such that they are bounded
and isotropic would work for recovery via l1-minimization
with suitable k without the averaging step. However, the
results are expected to improve with averaging because of
improvement in subgaussian parameters for tails.

D. Markovian sampling

It is well-known that under suitable conditions a Markov
chain exhibits rapid mixing and hence a fast convergence to
the stationary distribution π. The concentration of measure
phenomenon has also been studied in this context and it turns
out that under suitable conditions Markov chains also display
strong concentration of measure in the stationary distribution.
We assume that rows of X̄ are generated via averaging over
l samples from a finite state space Markov process. Suppose
Vn denotes an irreducible aperiodic Markov chain. That is,

X̄ij = 1
l

r+l−1∑
k=r

Vk, where r = ((i − 1)n + j)l + 1. We first

state a general theorem for concentration of an irreducible
aperiodic Markov chain.

Theorem 3.7 (Theorem 2, [4]): Let (Xn) be an irre-
ducible aperiodic Markov chain which is geometrically er-
godic on a space S. Let C be a small set such that the tails
of the return time to C are exponential. Let f : Rn 7→ R
be separately bounded. That is, for i = 1, . . . , n and some
constants Li:

|f(X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn)−
f(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn)| ≤ Li

Let π be the stationary distribution of {Xn}. Then there
exists M0 (depending on C) such that for all t > 0,

Pπ(|f(X1, . . . , Xn)− Eπf(X1, . . . , Xn)| > t) ≤
2e−M0t

2/
∑
L2

i

Using this Theorem, we prove the following:

Proposition 3.8: Let X̄ = (x̄ij) be an k × n matrix
whose rows X̄i are isotropic random vectors in Rn averaged
over samples xij generated from a geometrically ergodic
irreducible aperiodic Markov chain satisfying the conditions
in theorem 3.7. Let R > 0 be such that all entries |xij | < R
almost surely. Then for all u ∈ Rn and every t ∈ (0, 1), X̄
satisfies the concentration inequality of the form (3).

Proof: Without loss of generality assume that ‖x‖ = 1.
We show that the concentration inequality of the form (3) is
satisfied for matrix M := X̄ ∈ Rk×n when: (i) M has
independent (and isotropic) rows with each row averaged
over samples from the given Markov chain, and (ii) M has
(dependent but isotropic) rows where each row is averaged
over samples from the given Markov chain. Let Mi denote
the rows of M for 1 ≤ i ≤ k.

1) Assume that Mi are independent and isotropic.
Define f , a real-valued function on Rl by

f(xi1 , xi2 , . . . , xil) = 1
l

l∑
j=1

xij . where xij are

sampled from the given Markov chain. Then,

|f(xi1 , . . . , xij , . . . , xil)−
f(xi1 , . . . , x

′
ij , . . . , xil)| ≤ 2R/l.
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Thus f is separately bounded. Observe that each entry

of M is of the form 1
l

l∑
j=1

xij . Thus, there exists

M0 such that: Pπ(|Mij | > t) ≤ 2e−M0lt
2/4R2

. This
implies that each entry of M is subgaussian. This
means that |〈Mi, x〉| is subgaussian with parameters
β = 2, κ = M0l

4nR2 , for every x such that ‖x‖ = 1.
Then, using the same idea as in the proof of Lemma
9.8 in [5], define:

Zi = |〈Mi, x〉|2 − ‖x‖22, i ∈ {1, . . . , k}.

Since Mi is isotropic, we have EπZi = 0. Further,
Zi is subexponential because 〈Mi, x〉 is subgaussian,
that is, Pπ(|Zi| ≥ r) ≤ β exp(−κr) for all r > 0 and
β = 2, κ = M0l

4nR2 . By independence of the Mi, Zi are
also independent. Now,

1

k

k∑
i=1

Zi =
1

k

k∑
i=1

(|〈Mi, x〉|2 − ‖x‖22).

By Bernstein inequality for subexponential random
variables and the fact that t ∈ (0, 1), we get:

Pπ

(∣∣∣k−1 k∑
i=1

Zi

∣∣∣ ≥ t) ≤ 2 exp

(
− κ2

4β + 2κ
kt2
)
.

where, β = 2, κ = M0l
4nR2 .

2) Assume that Mi are isotropic but not independent.
Represent the matrix M ∈ Rk×n as a vector in Rlkn
such that each entry is sampled from the given Markov
chain. By abuse of notation we again denote this vector
by M . For every x ∈ Rn, with ‖x‖ = 1, define

fx : Rlkn 7→ R by fx(M) = 1
k

k∑
i=1

|〈Mi, x〉|2, where

the fx(M) is obtained by first sequentially averaging
over batches of l n-dimensional vectors in M to get
(M1,M2, . . . ,Mk) ∈ Rkn. Let M ′ denote a vector in
Rlkn such that it differs from M at one entry. Then,
we have

|fx(M)− fx(M ′)| ≤ 4R2

lk

Since ‖Mx‖ =
k∑
i=i

|〈Mi, x〉|2, by Theorem 3.7, there

exists M ′0 such that:

Pπ

(
1

k
‖Mx‖ − Eπ‖Mx‖| ≥ t

)
≤ 2e−

M′0lkt2

16nR4

holds for every x ∈ Rn and t ≥ 0. The inequality in
(3) follows from the fact that Mis are isotropic.

Combining this with Theorem 9.2 from [5], we have the
following reconstruction theorem for markovian samples.

Theorem 3.9: Let entries xij of X ∈ Rk×n be sampled
from an irreducible aperiodic Markov chain which is geo-
metrically ergodic on a space S satisfying the conditions
in theorem 3.7, with stationary distribution π. Assume that

|xij | ≤ R almost surely for some R > 0. Then there exist
constants C1, C2 > 0 depending on R,M0 (as above) for
i = 1, . . . , n such that if for ε ∈ (0, 1)

k ≥ C1s log(en/s) + C2 log(2ε−1),

then with probability 1− ε every s-sparse vector v ∈ Rn is
recovered from y = X̄v via l1-minimization.

IV. SIMULATIONS

Simulations are carried out for the measurement matrix
obtained by both averaging over samples as well as without
averaging. Figures show 5 subgraphs that illustrate - error
between the actual dependency and one estimated from
our method with averaging (i.e. using X̄ as measurement
matrix), the actual dependency vector, the estimated depen-
dency vector, error between the actual and estimated sparse
dependency without averaging (i.e. using X as measurement
matrix) and the estimated dependency vector using our
method without averaging respectively.

A. Independent samples

Each element of the sample X is an i.i.d. random variable.
We consider a vector with dimension n = 10000 and sparsity
s = 7. Number of samples considered are lk = 7500, i.e.,
we are averaging over l = 100 rows to obtain a single row
of X̄ ∈ R75×10000. A small noise was introduced into the
system with variance σ2. For the simulations below, we take
σ2 = 0.1.

In Figure 1, samples are obtained from F -distribution
with 8 degrees of freedom in the numerator and 5 degrees
of freedom in the denominator. Increasing k (number of
observations) helps in reducing the error. At higher values
of k, the reconstruction without averaging is almost as good
as the reconstruction with averaging. This is illustrated in
Figure 2. This means that there is a trade-off between
choosing k and l. However, as we shall see later, this is not
the case for dependent (markovian) samples and in those
cases averaging is necessary.

B. Markov model perturbed with nonlinearity

we generate entries xij of X from the following:

Xn+1 = αXn + f(Xn) + ζn (5)

where α ∈ [0, 1), f : R 7→ R is a nonlinear function and ζn
is a random noise.

1) Independent Rows: Each row is generated indepen-
dently by choosing the first value of the row independently.
We consider reconstruction by both averaging over the sam-
ples and without averaging and observe that the improvement
is marginal. This is consistent with the theoretical results. For
simulation purposes, α = 0.9, f(x) = sin(x)+ log sig(x)+
0.1e−|x| and ζn is a random variable were chosen, where
log sig denotes the log-sigmoid function.
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Fig. 1. Sparse recovery with k = 75 using elements from F-distribution.

Fig. 2. Sparse recovery with k = 250 using elements from F-distribution.

Figure 3 shows and example where the random noise is
generated from F-distribution with 8 degrees of freedom in
the numerator and 5 degrees of freedom in the denominator.

2) Dependent Rows: We generate all the elements from
the markov chain described in the equation (5). For generat-
ing each element the previous value is used. So, we generate
a large vector with these values and rearrange them in the
form of rows of X . We look at the case of averaging over
the samples as well as without averaging by considering the
first m samples for reconstruction.

Figure 4 illustrates an example where the random noise

Fig. 3. Sparse recovery using the random noise in the Markov process as
F-random variable

is generated from random variable generated by linear com-
bination of Laplacian with mean 15 and variance 5 and F-
distribution with 8 degrees of freedom in the numerator and
5 degrees of freedom in the denominator.

Fig. 4. Sparse recovery using the random noise in the markov process as
combination of Laplacian and F-random variable.

We also consider an example with random noise with
arbitrary distribution shown in Figure 5. This is illustrated
in Figure 6.
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Fig. 5. Distribution of random variable used as noise in the markov process.

Fig. 6. Sparse recovery using the random noise in the markov process as
shown in Figure 5.

C. Comparison with LASSO: Indoor localization
In this section, we test our method on real data and

compare it with plain LASSO method. For this purpose, UCI
Machine Learning database has been used. It is available
online at: https://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc.

This database can be used for testing regression methods
to estimate indoor location (latitude and longitude) using data
on wireless protocols. In the following simulation, n = 450,
number of samples lk = 20000 and l = 200 samples are
averaged to get a single row in X̄ (this means, k = 100).
So, X̄ ∈ R100×450.

We have compared our result with the
LASSO method available in glmnet package
(http://web.stanford.edu/h̃astie/glmnet/glmnet beta.html).

Comparisons were done for Aj (for j = 1, 2) obtained
using the training Set, with the validation set available. Here,
A1 corresponds to longitude and A2 corresponds to latitude.
Figures 7 and 8 show the coefficients of A1 and the fractional
error in construction respectively. Similarly, Figures 9 and
10 show the coefficients of A2 and the fractional error in
construction respectively.

Fig. 7. Coefficients of A1 (corresponding to longitude).

Fig. 8. Fractional error in reconstruction.
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Fig. 9. Coefficients of A2 (corresponding to latitude).

Fig. 10. Fractional error in reconstruction.

V. CONCLUDING REMARKS

The simulations confirm that while averaging does not
necessarily give significant advantage when entries of X are
independent, it leads to visible improvement when the entries
are not independent. As mentioned earlier, this is because
after sufficient averaging, owing to the concentration of
measure phenomenon, X̄ behaves like a subgaussian matrix.
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