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Abstract— This paper presents two methods for the establish-
ment of ISS estimates in Lq-norm (q ≥ 2) for Burgers’ equation
with different types of boundary disturbances. Precisely, for
Burgers’ equation with Dirichlet boundary conditions, we
use De Giorgi iteration and Lyapunov method by adequately
splitting the original problem into two subsystems to establish
the ISS estimates in Lq-norm with some q ≥ 2. Whereas, for
Burgers’ equation with certain nonlinear boundary conditions
involving spacial derivatives of the solution, we obtain the ISS
estimates in L2-norm and Lq-norm with any q ≥ 2 by some
variations of Sobolev embedding inequalities that can be used to
deal with the boundary items involved in Lyapunov functionals-
based analysis.

I. INTRODUCTION

In the past few years, there has been a considerable effort
devoted to extending the input-to-state stability (ISS) theory
to infinite dimensional systems governed by, e.g., partial
differential equations (PDEs). In particular, significant pro-
gresses on the establishment of ISS properties with respect
to disturbances distributed over the domain and acting on
the boundaries for different PDEs have been reported in
the recent literature. The notable accomplishments include
the establishment of different ISS characteristics for infinite-
dimensional systems [3], [4], [5], [8], [19], [20], [22], the
application of spectral decomposition and finite-difference
for the a priori estimates of ISS [9], [10], [11], [12], [13], the
monotonicity-based method for studying the ISS of nonlinear
parabolic equations with boundary disturbances [21], the
construction of ISS-Lyapunov functionals for certain classes
of PDEs [1], [2], [16], [17], [18], [25], [26], [28], [29].

It is interesting to note that the extension of the notion
of ISS to infinite dimensional systems w.r.t. in-domain
disturbances is somehow straightforward, except for some
technical issues and the particularity of infinite dimensional
systems, e.g., general arguments may not be easily estab-
lished for generic settings. However, the investigation on
the ISS properties w.r.t. boundary disturbances is much
more challenging [10], [11]. In particular, the well-developed
Lyapunov theory may be readily applied to dealing with
in-domain disturbances [17], [25]. While the successful
application of this technique to the establishment of ISS
properties w.r.t. boundary disturbances expressed in its orig-
inal form, i.e. without involving the time-derivatives of the
disturbances, has been reported in the literature only very
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recently [26], [28], [29]. These results show that the method
of Lyapunov functionals is still effective for establishing the
ISS properties for some linear and nonlinear PDEs with
different types of boundary disturbances.

The aim of this paper is to illustrate the application of
two methods developed in [28] and [29] in dealing with ISS
estimates for Burgers’ equation with Dirichlet, or Neumann
or Robin, or certain nonlinear boundary conditions. For
Burgers’ equation with Dirichlet boundary conditions, the
ISS estimate in L2-norm has already been obtained in [28] by
the method of Lyapunov functionals and De Giorgi iteration.
In the present work, the ISS estimates are extended to Lq-
norm for some q ≥ 2 by using the same method. For the case
where the system is subject to nonlinear Robin (or Neumann)
boundary conditions, the technique based on the method
of Lyapunov functionals and some Sobolev embedding-like
inequalities developed in [29] for dealing with the ISS
properties in L2-norm for a class of semi-linear parabolic
PDEs with Neumann or Robin boundary conditions has been
applied, which leads to the ISS estimates in Lq-norm for any
q ≥ 2. Note that the present work focuses on dealing with
boundary disturbances. Whereas, in-domain disturbances can
be incorporated into the ISS estimates in very similar ways
as shown in [28] and [29].

The rest of the paper is organized as follows. Section II
introduces briefly the technique of De Giorgi iteration and
presents some Sobolev embedding-like inequalities needed
for the subsequent development. Section III presents the
considered problems and the main results. Detailed devel-
opment on the establishment of ISS properties for Burg-
ers’ equation with Dirichlet and some nonlinear Robin (or
Neumann) boundary conditions are given, respectively, in
Section IV and Section V. Finally, some concluding remarks
are provided in Section VI.

II. PRELIMINARIES

A. De Giorgi iteration

De Giorgi iteration, also known as De Giorgi-Nash-Moser
theorem, is an important tool for regularity analysis of elliptic
and parabolic PDEs [7], [23], [24]. Specifically, let Ω ⊂
RN (N ≥ 1) be an open bounded set and γ be a constant.
The De Giorgi class DG+(Ω, γ) consists of functions u ∈
W 1,2(Ω) which satisfy, for every ball Br(y) ⊂ Ω, every
0 < r′ < r, and every k ∈ R, the following Caccioppoli
type inequality:∫
Br′ (y)

|∇(u− k)+|2dx ≤ γ

(r − r′)2

∫
Br(y)

|(u− k)+|2dx,
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where (u− k)+ = max{u− k, 0}. The class DG−(Ω, γ) is
defined in a similar way. The main idea of De Giorgi iteration
is to estimate |Ak|, the measure of {x ∈ Ω;u(x) ≥ k}, and
derive |Ak| = 0 with some k for functions u in De Giorgi
class.

To apply the method of De Giorgi iteration, we need to
split the original system with Dirichlet boundary conditions
into two subsystems, one of which is with the bound-
ary disturbance and a zero initial value. The solution of
this subsystem belongs to some De Giorgi class satisfying
Caccioppoli type inequality with γ = 0 and k associated
with the boundary disturbance. A consequence of that is
|Ak| = 0, which yields the boundedness of the solution of
this subsystem.

B. Preliminary inequalities

Throughout this paper, for notational simplicity, we always
denote ‖ · ‖L2(0,1) by ‖ · ‖. Let R≥0 = [0,+∞),R+ =
(0,+∞).

We present below some variations of Sobolev embedding
inequalities needed for the subsequent development.

Lemma 1: [29] Suppose that u ∈ C1([a, b];R). The fol-
lowing inequalities hold:

(i) u2(c) ≤ 2

b− a
‖u‖2 + (b− a)‖ux‖2 for any c ∈ [a, b];

(ii) ‖u‖2 ≤ 2u2(c)(b−a)+(b−a)2‖ux‖2 for any c ∈ [a, b];

(iii) ‖u‖2 ≤ (b− a)2

2
‖ux‖2 provided u(c0) = 0 for some

c0 ∈ [a, b].
Remark 1: The Sobolev embedding-like inequalities (i)

and (ii) (or (iii)) are developed in [29] for dealing with the
items associated with boundary points. These inequalities
are essential for the establishment of ISS properties w.r.t.
boundary disturbances of linear and nonlinear systems with
Robin or Neumann boundary conditions, or some nonlinear
types boundary conditions involving spacial derivatives of
the trajectories.

In the subsequent development, we employ extensively the
following inequalities.
Young’s inequality Let 1 < p, q < +∞, 1p + 1

q = 1. There
holds

ab ≤ εap + Cεb
q, ∀a, b ∈ R≥0,∀ε > 0,

where Cε = q−1(εp)−
q
p .

Gronwall’s inequality[6, Appendix B.2.j] Suppose that
y : R≥0 → R is absolutely continuous on [0, T ] for any
T > 0 and satisfies for a.e. t ≥ 0 the following differential
inequality

dy
dt

(t) ≤ g(t)y(t) + h(t),

where g, h ∈ L1([0, T ];R) for any T > 0. Then for all
t ∈ R≥0,

y(t) ≤ y(0)e
∫ t
0
g(s)ds +

∫ t

0

h(s)e
∫ t
s
g(s)dsds.

III. PROBLEM FORMULATION AND MAIN RESULTS

A. Problem formulation

In this paper, we address the ISS properties for Burgers’
equation

ut − αuxx + βuux = 0, in (0, 1)× R≥0, (1)

with the initial data

u(x, 0) = u0(x).

We consider two types of boundary conditions:
(i) Dirichlet boundary conditions

u(0, t) = 0, u(1, t) = d1(t), (2)

and
(ii) nonlinear Robin (or Neumann) boundary conditions

ux(0, t) = k0
(
(m0 + 1)u(0, t) + u3(0, t)

)
+ d0(t), (3a)

ux(1, t) = k1
(
(m1 + 1)u(1, t) + u3(1, t)

)
+ d1(t), (3b)

where d0(t) and d1(t) are disturbances on the boundaries.
In general, they can represent actuation and sensing errors.

Throughout this paper, we always assume that α > 0, β >
0, k0, k1,m0,m1 are constants, and d0, d1 ∈ C2(R≥0).
Furthermore, assume that d1(0) = 0 in (2).

Remark 2: Under appropriate assumptions on the initial
data u0 (e.g., u0 ∈ C2+σ([0, 1])), the existence of the
unique solution u ∈ H2+σ,1+σ

2 ([0, 1] × R≥0)(σ ∈ (0, 1))
to (1) and (2) is guaranteed by Theorem 6.1 of [14, P.
452], where H l, l2 ([0, 1] × R≥0) is some Banach space of
functions u(x, t) introduced in [14, P. 8]. For the existence
of the unique classical solution to (1), (3a) and (3b), one may
proceed in a similar way as in Section 3 of [15] to consider
the transformation û = u − a(x)d1(t) − b(x)d0(t), where
a(x) and b(x) are sufficiently smooth functions satisfying
a(0, t) = a(1, t) = ax(0, t) = b(0, t) = b(1, t) = bx(1, t) =
0, ax(1, t) = bx(0, t) = 1. We have then

ût − αûxx + β(û+ a(x)d1(t) + b(x)d0(t))

× (ûx + ax(x)d1(t) + bx(x)d0(t)) = 0,

û(x, 0) = u0(x)− a(x)d1(0)− b(x)d0(0),

ûx(0, t) = k0
(
(m0 + 1)û(0, t) + û3(0, t)

)
,

ûx(1, t) = k1
(
(m1 + 1)û(1, t) + û3(1, t)

)
.

The existence of the unique solution u ∈ H2+σ,1+σ
2 ([0, 1]×

R≥0)(β ∈ (0, 1)) to (1) and (3) is guaranteed by Theorem
7.4 of [14, P. 491].

B. Main results

Let K = {γ : R≥0 → R≥0| γ(0) = 0, γ is continuous,
strictly increasing}; K∞ = {θ ∈ K| lim

s→∞
θ(s) = ∞};

L = {γ : R≥0 → R≥0| γ is continuous, strictly decreasing,
lim
s→∞

γ(s) = 0}; KL = {µ : R≥0 × R≥0 → R≥0| µ(·, t) ∈
K,∀t ∈ R≥0, and µ(s, ·) ∈ L,∀s ∈ R+}.

Let u0 be the initial state of (1) in a certain function space
H with norm ‖ · ‖H.
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Definition 1: System (1) is said to be ISS in Lq-norm
(q ≥ 1) w.r.t. the boundary disturbance di(t) (i = 0, 1), if
there exist functions µ ∈ KL and γi ∈ K (i = 0, 1) such that
for any t ≥ 0, the solution of (1) and (2) (or (3)) satisfies
(i = 0, 1)

‖u‖Lq(0,1) ≤ µ
(
‖u0‖Lq(0,1), t

)
+ γi

(
max
s∈[0,t]

|di(s)|
)
. (4)

Moreover, System (1) is said to be EISS w.r.t. the boundary
disturbances di(t), i = 0, 1, if there exist µ′ ∈ K∞ and a con-
stat λ > 0 such that µ(‖u0‖Lq(0,1), t) ≤ µ′(‖u0‖Lq(0,1))e−λt
in (4).

The ISS properties w.r.t. boundary disturbances for Sys-
tems (1) are stated in the following theorems.

Theorem 2: Suppose that that max
t∈R≥0

|d1(t)| ≤ 1
p
α
β for

some p ≥ 1. System (1) with (2) is EISS in L2p-norm w.r.t.
the boundary disturbance d1(t) having the following estimate
for any t > 0:

‖u(·, t)‖2pL2p(0,1)

≤ 22p−1‖u0‖2pL2p(0,1)e
−λt + 22p−1 max

s∈[0,t]
|d1(s)|2p,

where λ = 2(2−
√

2) 2p−1
p α > 0.

Theorem 3: Suppose that the constants α, β, k0, k1, m0,
and m1 satisfy

α = α0 + α1, α0 > 2α1, α1 > 0,

k1 ≤ −
β

3α
< 0,m1 >

α1

αk1
,

k0 ≥
β

3α
> 0,m0 >

2α0

αk0
.

(i) System (1) with (3) is EISS in L2-norm w.r.t. the bound-
ary disturbances d1(t) and d0(t) having the following
estimate for any t > 0:

‖u(·, t)‖2 ≤‖u0‖2e−2(α0−2α1)t +
α

2ε(α0 − 2α1)

×
(

max
s∈[0,t]

|d1(s)|2 + max
s∈[0,t]

|d0(s)|2
)
,

where ε is a positive constant satisfying (20).
(ii) Assume further that m1 ≥ 0, then for any p ≥ 1,

the system (1) with (3) is EISS in L2p-norm w.r.t.
the boundary disturbances d1(t) and d0(t) having the
following estimate for any t > 0:

‖u(·, t)‖2pL2p(0,1)≤ ‖u
0‖2pL2p(0,1)e

− 2(α0−2α1)(2p−1)
p t

+
αp2Cε

(α0 − 2α1)(2p− 1)

×
(

max
s∈[0,t]

|d1(s)|2p + max
s∈[0,t]

|d0(s)|2p
)
,

where ε > 0 satisfies (25), and Cε = 1
2p

(
2p−1
2pε

) 2p−1
2p

.

Taking the 2pth root of both sides of the inequality in (ii)
of Theorem 3 and letting p → +∞, one may obtain L∞-
estimate of the solution.

Corollary 4: Under the same assumptions as in Theo-
rem 3, the solution of the system (1) with (3) is bounded
with the following estimate for any t > 0:

‖u(·, t)‖L∞(0,1)≤‖u0‖L∞(0,1)+ max
s∈[0,t]

|d1(s)|+ max
s∈[0,t]

|d0(s)|.
Remark 3: The ISS estimate provided in Theorem 2 is an

extension of the one in L2-norm given in [29]. Nevertheless,
the ISS estimate in L∞-norm is not established yet in
Theorem 2 and Theorem 3.

Remark 4: In general, the boundedness of the distur-
bances in Theorem 2 is a reasonable assumption for nonlinear
PDEs in the establishment of ISS properties [18]. Moreover,
as the aim of the work is to present two methods in the
establishment of ISS properties for nonlinear equations,
some assumptions on the parameters in Theorem 2 and
Theorem 3 are mostly of technical nature. Nevertheless, the
ISS estimates may still hold under some relaxed conditions.

IV. ISS PROPERTIES FOR BURGERS’ EQUATION WITH
DIRICHLET BOUNDARY CONDTIONS

In this section, we establish the ISS properties for Burgers’
equation w.r.t. the boundary disturbance d1(t) described in
(2) and Theorem 2.

Let w be the unique solution of the following system:

wt − αwxx + βwwx = 0 in (0, 1)× R≥0, (5a)
w(0, t) = 0, w(1, t) = d1(t), (5b)
w(x, 0) = 0. (5c)

Let v = u−w. Then, it is easy to see that v is the solution
of the following system:

vt − αvxx + βvvx + β(wv)x = 0 in (0, 1)× R≥0,
v(0, t) = v(1, t) = 0, (6a)

v(x, 0) = u0(x). (6b)

For system (5), we have the following estimates.
Theorem 5: For every t > 0, there holds

max
(x,s)∈[0,1]×[0,t]

|w(x, s)| ≤ max
s∈[0,t]

|d1(s)|. (7)

It follows that for any p ≥ 1 and every t > 0,

‖w(·, t)‖2pL2p(0,1) ≤ max
s∈[0,t]

|d1(s)|2p.
For system (6), we have the following estimates.

Theorem 6: Assume that max
t∈R≥0

|d1(t)| ≤ 1
p
α
β for some

p ≥ 1. For every t > 0, there holds

‖v(·, t)‖2pL2p(0,1) ≤ ‖u
0‖2pL2p(0,1)e

−λt,

where λ = 2
(
2−
√

2
)

2p−1
p α > 0.

Proof: [Proof of Theorem 5] We resort to the technique
of De Giorgi iteration by following the standard process
presented in, e.g., [27, Theorem 4.2.1] and [28].

For any fixed t > 0, let k = max
{

max
s∈[0,t]

d1(s), 0
}
≥ 0.

Let η(x, s) = (w(x, s) − k)+χ[t1,t2](s), where χ[t1,t2](t) is

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

564



the character function on [t1, t2] and 0 ≤ t1 < t2 ≤ t.
Multiplying (5) by η, we get∫ t

0

∫ 1

0

(w − k)t(w − k)+χ[t1,t2](s)dxds

+ α

∫ t

0

∫ 1

0

|((w − k)+)x|2χ[t1,t2](s)dxds

+ β

∫ t

0

∫ 1

0

wwx(w − k)+χ[t1,t2](s)dxds = 0. (8)

Let Ik(s) =
∫ 1

0
(w(x, s) − k)2+dx, which is absolutely

continuous on [0, t]. Suppose that Ik(t0) = max
s∈[0,t]

Ik(s) with

some t0 ∈ [0, t]. Due to Ik(0) = 0 and Ik(s) ≥ 0, one may
assume that t0 > 0 without loss of generality.

For ε > 0 small enough, choosing t1 = t0−ε and t2 = t0,
it follows

1

2ε

∫ t0

t0−ε

d
dt

∫ 1

0

(ṽ − k)2+dxds

+
α

ε

∫ t0

t0−ε

∫ 1

0

|((ṽ − k)+)x|2dxds

+
β

ε

∫ t0

t0−ε

∫ 1

0

wwx(w − k)+dxds ≤ 0.

Note that

1

2ε

∫ t0

t0−ε

d
dt

∫ 1

0

(ṽ − k)2+dxds

=
1

2ε
(Ik(t0)− Ik(t0 − ε)) ≥ 0.

We have

α

ε

∫ t0

t0−ε

∫ 1

0

|((w − k)+)x|2dxds

+
β

ε

∫ t0

t0−ε

∫ 1

0

wwx(w − k)+dxds ≤ 0.

Letting ε→ 0+, we get

α

∫ 1

0

|((w(x, t0)− k)+)x|2dx

+ β

∫ 1

0

w(x, t0)wx(x, t0)(w(x, t0)− k)+dx ≤ 0. (9)

Now we write w = w(x, t0) for simplicity. Due to
(w(0, t0)− k)+ = (w(1, t0)− k)+ = 0, one may get∫ 1

0

wwx(w − k)+dx

=

∫ 1

0

(w − k)+((w − k)+)x(w − k)+dx

+

∫ 1

0

k((w − k)+)x(w − k)+dx

=
1

3
((w − k)+)3|x=1

x=0 +
k

2
((w − k)+)2|x=1

x=0 = 0. (10)

Then for Ik(t0), we get by (iii) of Lemma 1, (9) and (10)

Ik(t0) = α

∫ 1

0

|(w(x, t0)− k)+)|2dx

≤ α

2

∫ 1

0

|(w(x, t0)− k)+)x|2dx ≤ 0.

Recalling the definition of Ik(t0), for any s ∈ [0, t] we
conclude that

Ik(s) ≤ Ik(t0) ≤ 0, (11)

which implies that for almost every (x, s) ∈ [0, 1] × [0, t]
there holds

w(x, s) ≤ max
{

max
s∈[0,t]

d1(s), 0
}
.

By continuity of w(x, s), for every (x, s) ∈ [0, 1] × [0, t]
there holds

w(x, s) ≤ max{max
s∈[0,t]

d1(s), 0}. (12)

We should prove the lower boundedness of w(x, t). Indeed,
setting w̃ = −w, we get

w̃t − αw̃xx − βw̃w̃x = 0,

w̃(0, t) = 0, w̃(1, t) = −d1(t),

w̃(x, 0) = 0.

Then for every (x, s) ∈ [0, 1]× [0, t] there holds

−w(x, s) = w̃(x, s) ≤ max
{

max
s∈[0,t]

−d1(s), 0
}
. (13)

Finally, we conclude (7) by (12) and (13).
Proof: [Proof of Theorem 6] Multiplying (6) by v2p−1

and integrating over (0, 1), we get∫ 1

0

vtv
2p−1dx+ α(2p− 1)

∫ 1

0

(vp−1vx)2dx

+ β(2p− 1)

∫ 1

0

v2(p−1)vxvwdx = 0.

By Young’s inequality, Theorem 5, and the assumption on
d1, we deduce that

1

2p

d
dt
‖vp‖2 + α(2p− 1)‖vp−1vx‖2

=− β(2p− 1)

∫ 1

0

v2(p−1)vxvwdx

≤β(2p− 1)

2ε
max

(x,s)∈[0,1]×[0,t]
|w(x, s)|

∫ 1

0

v2(p−1)v2xdx

+
εβ(2p− 1)

2
max

(x,s)∈[0,1]×[0,t]
|w(x, s)|

∫ 1

0

v2(p−1)v2dx

≤β(2p− 1)

2ε
max
s∈[0,t]

|d1(s)|‖vp−1vx‖2

+
εβ(2p− 1)

2
max
s∈[0,t]

|d1(s)|‖vp‖2,

which yields

1

2p(2p− 1)

d
dt
‖vp‖2 ≤

(
β

2ε
max
s∈[0,t]

|d1(s)| − α
)
‖vp−1vx‖2

+
εβ

2
max
s∈[0,t]

|d1(s)|‖vp‖2.
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Note that by (iii) of Lemma 1, one has

‖vp‖2 ≤ p2

2
‖vp−1vx‖2. (14)

It follows
1

2p(2p− 1)

d
dt
‖vp‖2

≤
(
β

2

(
1

ε
+
εp2

2

)
max
s∈[0,t]

|d1(s)| − α
)
‖vp−1vx‖2. (15)

Choosing ε =
√
2
p and recalling the assumption on d1(t),

one has

β

2

(
1

ε
+
εp2

2

)
max
s∈[0,t]

|d1(s)| = pβ√
2

max
s∈[0,t]

|d1(s)|

≤ pβ√
2
× α

pβ
=

√
2α

2
. (16)

Then by (14), (15) and (16), we obtain

d
dt
‖v‖2pL2p(0,1) =

d
dt
‖vp‖2

≤ 2p(2p− 1)

(√
2

2
− 1

)
α‖vp−1vx‖2

≤ −2p(2p− 1)

(
1−
√

2

2

)
α× 2

p2
‖vp‖2

≤ −λ‖vp‖2,

where λ = 2(2−
√

2) 2p−1
p α > 0.

One may conclude the desired result by Gronwall’ inequal-
ity.

Proof: [Proof of Theorem 2] Note that u = w+v. Then,
we get by Theorem 5 and Theorem 6 that for q ≥ 1:

‖u(·, t)‖2qL2q(0,1)

≤22q−1‖w(·, t)‖2qL2q(0,1) + 22q−1‖v(·, t)‖2qL2q(0,1)

≤22q−1‖u0‖2e−λ
′t + 22q−1

(
max
s∈[0,t]

|d1(s)|
)2q

,

where λ′ = 2(2−
√

2) 2p−1
p α > 0.

Remark 5: Considering the original system (1) with (2)
and applying De Giorgi iteration, one may proceed as in the
proof of Theorem 5 to obtain the boundedness of the solution
having the estimate

max
(x,s)∈[0,1]×[0,t]

|u(x, s)| ≤ max
x∈[0,1]

|u0(x)|+ max
s∈[0,t]

|d1(s)|.

Indeed, it suffices to set k = max
{

max
s∈[0,t]

d1(s), u0(x), 0
}
≥

0 and take η(x, s) = (u(x, s) − k)+χ[t1,t2](s) as a test
function to obtain the boundedness from above.

Remark 6: De Giorgi iteration can be used in problems
with multidimensional spacial variables, e.g.,

ut − α∆u+ β(uux + uuy) = 0, in Ω× R≥0,
u(x, t) = d(t), in ∂Ω× R≥0,
u(x, 0) = u0(x), in Ω,

where Ω ⊂ R2 is an open bounded domain with smooth
boundary ∂Ω, c ≥ 0 is a constant, and ∆ is the Laplace
operator.

Remark 7: De Giorgi iteration can also be used in the
establishment of ISS properties for Burgers’ equation with a
distributed disturbance f(x, t) under the form (see [28]):

ut − αuxx + βuux = f(x, t), in (0, 1)× R≥0,
u(0, t) = 0, u(1, t) = d1(t),

u(x, 0) = u0(x).

In such a problem, an iteration formula (see Lemma 1 in
[28]) will be needed to perform the De Giorgi iteration.

V. ISS PROPERTIES FOR BURGERS’ EQUATION WITH
NONLINEAR BOUNDARY CONDITIONS

In this section, we establish the ISS properties by Lya-
punov method for Burgers’ equation w.r.t. the boundary
disturbances d0(t) and d1(t) described in (3) and Theorem 3.
Inequalities (i) and (ii) (or (iii)) of Lemma 1 are essential for
establishing the ISS properties w.r.t. boundary disturbances
in such problems.

Proof: [Proof of Theorem 3] For simplicity, we write
ui = u(i, t) for i = 0, 1.

First, we prove the ISS estimate in L2-norm, i.e., the
claim (i). Multiplying (1) with u and integrating over [0, 1],
we have∫ 1

0

utudx− α
∫ 1

0

uxxudx+ β

∫ 1

0

u2uxdx

=
1

2

d
dt
‖u‖2 − αk1(u21 + u41) +

β

3
u31 − αk1m1u

2
1

+ αk0(u20 + u40)− β

3
u30 + αk0m0u

2
0

− αd1(t)u1 + αd0(t)u0 + α‖ux‖2

=0.

Note that

α = α0 + α1, αk1 ≤ −
β

3
, −αk0 ≤ −

β

3
,

u30 ≤ u20 + u40, −u31 ≤ u21 + u41.

Then we have
1

2

d
dt
‖u‖2 + (α0 + α1)‖ux‖2

=− β

3
u31 + αk1(u21 + u41) +

β

3
u30 − αk0(u20 + u40)

+ αd1(t)u1 − αd0(t)u0 + αk1m1u
2
1 − αk0m0u

2
0

≤− β

3
u31 −

β

3
(u21 + u41) +

β

3
u30 −

β

3
(u20 + u40)

+ αd1(t)u1 − αd0(t)u0 + αk1m1u
2
1 − αk0m0u

2
0

≤αd1(t)u1 − αd0(t)u0 + αk1m1u
2
1 − αk0m0u

2
0

≤ α
2ε
d21(t) +

ε

2
u21 +

α

2ε
d20(t) +

ε

2
u20

+ αk1m1u
2
1 − αk0m0u

2
0

=

(
ε

2
+ αk1m1

)
u21 +

(
ε

2
− αk0m0

)
u20
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+
α

2ε
d21(t) +

α

2ε
d20(t), (17)

where in the last inequality we used Young’s inequality.
By (i) and (ii) of Lemma 1, we have

‖ux‖2 ≥ u21 − 2‖u‖2,
‖ux‖2 ≥ ‖u‖2 − 2u20.

(18)

Then we infer from α0 > 0, α1 > 0, (17) and (18) that

1

2

d
dt
‖u‖2 + α1u

2
1 − 2α0u

2
0 + (α0 − 2α1)‖u‖2

≤ α
2ε
d21(t) +

α

2ε
d20(t) +

(
ε

2
+ αk1m1

)
u21

+

(
ε

2
− αk0m0

)
u20. (19)

Note that by the assumptions, we have

α0 − 2α1 > 0, αk1m1 < α1,−αk0m0 < −2α0.

One may choose ε > 0 small enough such that
ε

2
+ αk1m1 ≤ α1,

ε

2
− αk0m0 ≤ −2α0. (20)

Then we deduce from (19) and (20) that

d
dt
‖u‖2 ≤ −2(α0 − 2α1)‖u‖2 +

α

ε
d21(t) +

α

ε
d20(t). (21)

By (21) and Gronwall’s inequality, one may obtain

‖u‖2 ≤‖u0‖2e−2(α0−2α1)t

+
α

ε

∫ t

0

d21(s)e−2(α0−2α1)t+2(α0−2α1)sds

+
α

ε

∫ t

0

d20(s)e−2(α0−2α1)t+2(α0−2α1)sds

≤‖u0‖2e−2(α0−2α1)t

+
α

2ε(α0 − 2α1)

(
max
s∈[0,t]

d21(s) + max
s∈[0,t]

d20(s)

)
.

Now we prove the ISS estimate in L2p-norm for any
p ≥ 1, i.e., the claim (ii). Multiplying (1) with u2p−1 and
integrating over [0, 1], we have

1

2p

d
dt
‖up‖2 − αuxu2p−1|x=1

x=0 + α(2p− 1)

∫ 1

0

u2(p−1)u2xdx

+
β

2p+ 1
u2p+1|x=1

x=0 = 0.

Considering the boundary conditions, one may get

1

2p

d
dt
‖up‖2 + α(2p− 1)‖up−1ux‖2

=u2p1

(
αk1(1 + u21)− β

2p+ 1
u1

)
+ u2p0

(
− αk0(1 + u20) +

β

2p+ 1
u0

)
+ αk1m1u

2p
1 − αk0m1u

2p
0 + αd1u

2p−1
1 − αd0u2p−10

≤u2p1
(
αk1 +

β

2p+ 1

)
(1 + u21)︸ ︷︷ ︸

=I1

+ u2p0

(
− αk0 +

β

2p+ 1

)
(1 + u20)︸ ︷︷ ︸

=I2

+ αk1m1u
2p
1 − αk0m1u

2p
0 + αd1u

2p−1
1 − αd0u2p−10 .

Note that by assumptions, for any p ≥ 1, we have

αk1 +
β

2p+ 1
≤ αk1 +

β

3
≤ 0,

−αk0 +
β

2p+ 1
≤ −αk0 +

β

3
≤ 0.

It follows I1 ≤ 0 and I2 ≤ 0. Thus

1

2p

d
dt
‖up‖2 + α(2p− 1)‖up−1ux‖2

≤αk1m1u
2p
1 − αk0m1u

2p
0 + αd1u

2p−1
1 − αd0u2p−10

≤αk1m1u
2p
1 − αk0m1u

2p
0

+ εα
(
u2p1 + u2p0

)
+ Cεα

(
d2p1 + d2p0

)
=α (k1m1 + ε)u2p1 + α (−k0m0 + ε)u2p0

+ Cεα
(
d2p1 + d2p0

)
, (22)

where in the second inequality we used Young’s inequality

with ε > 0, Cε = 1
2p

(
2p−1
2pε

) 2p−1
2p

.

By (i) and (ii) of Lemma 1, we have

u2p1 − 2‖up‖2 ≤ ‖(up)x‖2 = p2‖up−1ux‖2,
‖up‖2 − 2u2p0 ≤ ‖(up)x‖2 = p2‖up−1ux‖2.

(23)

Then we infer from α = α0 + α1, (22) and (23) that

1

2p

d
dt
‖up‖2 +

α1(2p− 1)

p2
u2p1 −

2α0(2p− 1)

p2
u2p0

≤α (k1m1 + ε)u2p1 + α (−k0m0 + ε)u2p0

+ Cεα
(
d2p1 + d2p0

)
− (α0 − 2α1)(2p− 1)

p2
‖up‖2. (24)

Note that by the assumptions, we have

α0 − 2α1 > 0,

αk1m1 ≤ 0 <
α1(2p− 1)

p2
,

−αk0m0 < −2α0 ≤ −
2α0(2p− 1)

p2
.

One may choose ε > 0 small enough such that

α(ε+ k1m1) ≤ α1(2p− 1)

p2
, (25a)

α(ε− k0m0) ≤ −2α0(2p− 1)

p2
. (25b)

Then we deduce from (24) and (25)

d
dt
‖u‖2pL2p(0,1) =

d
dt
‖up‖2

≤2pαCε

(
d2p1 + d2p0

)
− 2 (α0 − 2α1) (2p− 1)

p
‖up‖2
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=2pαCε

(
d2p1 + d2p0

)
− 2(α0 − 2α1)(2p− 1)

p
‖u‖2pL2p(0,1).

(26)

By (26) and Gronwall’s inequality, one may obtain the
desired result.

Remark 8: Under appropriate assumptions on the
parameters, Lemma 1 can be used to establish ISS estimates
for Burgers’ equation with boundary conditions having the
following types:

(i)

{
u(0, t) = 0,

ux(1, t) = k1

(
(m1 + 1)u(1, t) + u3(1, t)

)
+ d1(t),

(ii)


(
ux(0, t)− k0u(0, t)− β

3α
u2(0, t)

)
u(0, t) = 0,

ux(1, t) = k1u(1, t) +
β

3α
u2(1, t) + d1(t),

(iii)



ux(0, t) =k0

(
(m0 + 1)u(0, t) + u3(0, t)

)
+ k2(u(0, t) + up(0, t)) + d0(t),

ux(1, t) =k1

(
(m1 + 1)u(1, t) + u3(1, t)

)
+ k3(u(1, t) + uq(1, t)) + d1(t),

where k0 > 0, k1 < 0, k2 ≥ 0, k3 ≤ 0 are constants, p, q ≥ 5
are odd numbers.

We consider ISS property in L2-norm for Burgers’ e-
quation (1) with the following boundary conditions as an
example (one of the cases in (ii)).u(0, t) = 0,

ux(1, t) = k1u(1, t) +
β

3α
u2(1, t) + d1(t).

In this case, we assume that

k1 < −2,

then (1) is EISS.
Indeed, proceeding as before, one may get∫ 1

0

utudx− α
∫ 1

0

uxxudx+ β

∫ 1

0

u2uxdx = 0,

which and the boundary conditions give
1

2

d
dt
‖u‖2 + α‖ux‖2 = αk1u

2
1 + αd1(t)u1

≤ αk1u21 +
α

2ε
d21(t) +

ε

2
u21,∀ε > 0.

By (ii) of Lemma 1, we have

‖ux‖2 ≥ ‖u‖2 − 2u21.

Then one has
1

2

d
dt
‖u‖2 + α‖u‖2 − 2αu21 ≤

(
αk1 +

ε

2

)
u21 +

α

2ε
d21(t).

Choosing ε > 0 small enough such that

αk1 +
ε

2
≤ −2α,

one may obtain the EISS estimates of (1) in L2-norm by
Gronwall’s inequality.

VI. CONCLUDING REMARKS

This paper considered the establishment of ISS proper-
ties for Burgers’ equation with different types of bound-
ary disturbances, including Dirichlet boundary conditions
and some nonlinear boundary conditions involving spacial
derivatives of the solutions. The two methods used in this
work are all based on Lyapunov functionals, while combining
with, respectively, the De Giogi iteration and some Sobolev
embedding-like inequalities. The results of this work show
that the well-established method of Lyapunov functionals
remains a convenient tool for the study of the ISS property
of PDEs w.r.t. boundary disturbances, as in the case where
the disturbances are distributed over the domain, although its
application in the former case may be very challenging and
remains an open research problem.

REFERENCES

[1] F. B. Argomedo, C. Prieur, E. Witrant, and S. Bremond. A strict
control Lyapunov function for a diffusion equation with time-varying
distributed coefficients. IEEE Trans. Autom. Control, 58(2):290–303,
2013.

[2] F. B. Argomedo, E. Witrant, and C. Prieur. D1-input-to-state stability
of a time-varying nonhomogeneous diffusive equation subject to
boundary disturbances. In American Control Conference, pages 2978–
2983, Montreal, Que, Oct. 2012.

[3] S. Dashkovskiy and A. Mironchenko. On the uniform input-to-
state stability of reaction diffusion systems. In IEEE Conference on
Decision and Control, pages 6547–6552, Atlanta, Georgia, USA, Dec.
2010.

[4] S. Dashkovskiy and A. Mironchenko. Input-to-state stability of
infinite-dimensional control systems. Math. Control Signals Systems,
25(1):1–35, 2013.

[5] S. Dashkovskiy and A. Mironchenko. Input-to-state stability of
nonlinear impulsive systems. SIAM J. Control Optim., 51(3):1962–
1987, 2013.

[6] L. C. Evans. Partial Differential Equations. American Mathematical
Society, Providence, Rhode Island, 2nd edition, 2010.

[7] E. D. Giorgi. Sulla differenziabilità e l’analiticità delle estremali degli
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