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Abstract— Under intermittent communication, a persistent-
hold consensus algorithm is proposed to solve the consensus
problem of first-order multi-agent systems. Based on matrix
theory and graph theory, consensus conditions are obtained
for the agents converging to the asymptotic consensus under
fixed topology and switching topologies, respectively. Numerical
simulations show the correctness of theoretical results.

I. INTRODUCTION

In the past decades, tremendous research efforts have been
devoted for distributed coordination control of multi-agent
systems for its widely engineering applications in formation
control of UAVs, sensor networks, smart grid, etc.

As a fundamental issue of coordination control, consensus
problem requires that the outputs of several agents reach
an agreement on the state of interest via locally exchanging
information. Consensus problem has been widely analyzed
and synthesized for multi-agent systems under different com-
munication constraints including packet loss, noises, time
delays, switching topologies, etc [1], [2], [3], [4], [5].

Moreover, intermittent communication considered in this
paper means that the agents communicate with its neigh-
bors at intermittent time intervals, but not continuously. To
deal with intermittent communication, current works have
mainly focused on the corresponding intermittent control
which requires the control input to be driven by normal
consensus coordination parts with communication and driven
by zero without communication [6]. For first-order multi-
agent systems with nonlinear dynamics, Wen et al. analyzed
the consensus problem with intermittent communication
and obtained sufficient consensus conditions with a fixed
strongly connected topology [7]. Besides, consensus prob-
lem of second-order multi-agent systems with intermittent
communication has received more extensive investigations.
With intermittent dynamical consensus algorithms, consen-
sus convergence conditions of nonlinear and linear second-
order multi-agent systems without and with time delays have
been obtained by constructing proper Lyapunov functions
[8], [9], [10], [11], [12]. Wen et al. [13] designed intermit-
tent consensus algorithms for the multi-agent systems with
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agents modelled by general linear dynamics, and consensus
conditions on communication rate were obtained based on
matrix theory and switching systems theory. For second-
order multi-agent systems, Liu et al. [14] modified the usual
intermittent control by a pulse-modulated intermittent control
that combined the impulsive control and sampled control,
some necessary and sufficient conditions have been obtained
based on discretization approaches and stability theory [14].
Actually, the intermittent control has also been widely used
in the stabilization control of nonlinear systems [15] and the
synchronization control of complex networks [16], [17].

Motivated by the aforementioned intermittent control and
the usual sampled-hold control [19], [20], [21], [22], we
design a persistent-hold consensus algorithm to solve the
consensus problem of first-order multi-agent systems under
intermittent communication. By using matrix theory and
graph theory, consensus conditions are obtained for the
agents converging to the asymptotic consensus under fixed
topology that has a spanning tree, firstly. Then, consensus
conditions are also gained for the agents under switching
topologies, in which the union of topologies consecutively
across bounded and non-overlapping time intervals has a
spanning tree.

II. PROBLEM FORMULATION
A. Agents’ Dynamics and Topology

Consider the first-order dynamic agents given by

ẋi(t) = ui(t), i = 1, · · · ,n, (1)

where xi(t) ∈ R and ui(t) ∈ R are the state and the control
input of agent i respectively.

A weighted digraph G = (V,E,A) of order n consists of a
set of vertices V = {1, · · · ,n}, a set of edges E ⊆V ×V and
a weighted adjacency matrix A = [ai j]∈ Rn×n with ai j ≥ 0. A
directed edge from i to j in G is denoted by ei j = (i, j) ∈ E,
which means that the node j can obtain information from the
node i. Assume a ji > 0 ⇔ ei j ∈ E and aii = 0 for all i ∈ V .
The set of neighbors of node i is denoted by Ni = { j ∈ V :
( j, i)∈ E}. The Laplacian matrix of the digraph G is defined
as L = D−A = [li j] ∈ Rn×n, where D = diag{∑n

j=1 ai j, i =
1, · · · ,n} is the degree matrix. In the digraph G, a directed
path from node i1 to node is is a sequence of ordered edges
of the form (i1, i2), · · · ,(is−1, is) where i j ∈ V . A digraph is
said to have a spanning tree, if there exists a node such that
there is a directed path from this node to every other node.

A matrix C = [ci j]∈ Rn×r is nonnegative if all its elements
ci j are nonnegative. If a nonnegative matrix C ∈Rn×r satisfies
C1r = 1n, then it is said to be (row) stochastic. A stochastic
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matrix B ∈ Rn×n is said to be indecomposable and aperiodic
(SIA) if limm→∞ Bm = 1n f T where f ∈ Rn. In this paper, 1n =
[1,1, · · · ,1]T , and In denotes a n×n identity matrix.

Lemma 1. [18] Let P1,P2, · · · ,Pk ∈ Rn×n be a finite
set of SIA matrices with the property that for each
sequence Pi1 ,Pi2 , · · · ,Pi j with positive length, the matrix
product Pi j Pi j−1 · · ·Pi1 is SIA. Then, for each infinite se-
quence Pi1 ,Pi2 , · · · , there exists a vector f ∈ Rn such that
lim j→∞ Pi j Pi j−1 · · ·Pi1 = 1n f T .

B. Intermittent Communication and Persistent-hold Control

In reality, the communication links between neighboring
agents are intermittently connected for various constraints
including obstruction, communication range, and so on. Ape-
riodically intermittent communication is illustrated in Fig. 1,
and each time interval [tk, tk+1] contains communicating
interval hk1 and the left interval of communication loss.

Communication
Communication 

Loss

tk

hk1

tk+1

Fig. 1. Intermittent Communication.

In this paper, we assume that the interconnection topology
of agents is fixed across the time interval [tk, tk+1]. For the
multi-agent systems under intermittent communication, usual
intermittent control, in which the control input is driven by
normal consensus coordination parts with communication
and driven by zero without communication, has been widely
proposed to deal with the consensus seeking problem.

Different from intermittent control strategy, we propose a
persistent-hold control strategy shown in Fig. 2. The time
interval [tk, tk+1] is divided into three parts composed of
[tk, tk + hk1], [tk + hk1, tk + hk2] and [tk + hk2, tk+1]. In the
time interval [tk, tk + hk1], the control input to be driven by
persistent control, which is same as the usual intermittent
control. In the communication loss interval [tk+hk1, tk+1], the
control input is also driven by hold control for an assigned
time interval [tk+hk1, tk+hk1+hk2] when the communication
begins to be unconnected, and the control input is assumed
to be zero for the left time interval [tk +hk1 +hk2, tk+1] after
the hold control.

Then, the consensus algorithm based on the persistent-hold
control strategy is designed as

ui(t) =


∑ j∈Ni(k) ai j(k)(x j(t)− xi(t)),

t ∈ (tk, tk +hk1);
∑ j∈Ni(k) ai j(k)(x j(tk +hk1)− xi(tk +hk1)),

t ∈ (tk +hk1, tk +hk1 +hk2);
0, t ∈ (tk +hk1 +hk2, tk+1),

(2)

where hk1 > 0,hk2 > 0,k = 0,1,2, · · · , Ni(k) is the set of agent
i’s neighbors, ai j(k)> 0, j ∈ Ni(k) is the coupling weights.

Persistent Control
Hold 

Control

Spare 

Time

hk1 hk2

Communication LossCommunication

tk tk+1

Fig. 2. Persistent-hold control strategy.

Remark 1. Compared with usual intermittent control strat-
egy, the persistent-hold control strategy in (2) has an extra
part defined as hold control, and we will demonstrate that
the extra hold control can improve the control performance.

III. CONSENSUS SEEKING UNDER FIXED
TOPOLOGY

In this section, we focus on the fixed topology that the
coupling weights and the interconnections across all the
communicating intervals are identical. Thus, the algorithm
(2) with fixed topology turns to be

ui(t) =


∑ j∈Ni ai j(x j(t)− xi(t)),

t ∈ (tk, tk +hk1);
∑ j∈Ni ai j(x j(tk +hk1)− xi(tk +hk1)),

t ∈ (tk +hk1, tk +hk1 +hk2);
0, t ∈ (tk +hk1 +hk2, tk+1).

(3)

With algorithm (3), the closed-loop form of agents (1) is
given by

ẋi(t) =


∑ j∈Ni ai j(x j(t)− xi(t)),

t ∈ (tk, tk +hk1);
∑ j∈Ni ai j(x j(tk +hk1)− xi(tk +hk1)),

t ∈ (tk +hk1, tk +hk1 +hk2);
0, t ∈ (tk +hk1 +hk2, tk+1).

(4)

Formulate the above system (4) in a compact-vector form as

ẋ(t) =

 −Lx(t), t ∈ (tk, tk +hk1);
−Lx(tk +hk1), t ∈ (tk +hk1, tk +hk1 +hk2);
0, t ∈ (tk +hk1 +hk2, tk+1),

(5)

where x(t) = [x1(t), · · · ,xn(t)]T . By computation, then, we
get

x(t) =


e−L(t−tk)x(tk),

t ∈ (tk, tk +hk1);
x(tk +hk1)− (t − (tk +hk1))Lx(tk +hk1),

t ∈ (tk +hk1, tk +hk1 +hk2);
x(tk +hk1 +hk2), t ∈ (tk +hk1 +hk2, tk+1).

Hence, we obtain

x(tk+1) = (I −hk2L)e−Lhk1x(tk). (6)

In this section, we will consider the following topology.
Assumption 1. The interconnection topology of the multi-

agent systems (1) has a spanning tree.
With Assumption 1, we get the following lemma in [2].
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Lemma 2. [2] 0 is a simple eigenvalue of the Laplacian
matrix L, and L1n = 0 with 1n = [1, · · · ,1]T , if and only if
the digraph G = (V,E,A) has a spanning tree.

With Assumption 1, the eigenvalues of the Laplacian
matrix L are denoted by λ1 = 0,λi, i = 2 · · · ,n with Re(λi)>
0, i = 2 · · · ,n.

Now, we get the following consensus conditions.
Theorem 1. Consider the multi-agent systems (4) with

a fixed topology satisfying Assumption 1. The agents (4)
converge to the consensus asymptotically, if

sup
k=1,2,··· ,∞

|(1−hk2λi)e−hk1λi |< 1, i = 2, · · · ,n, (7)

where λi, i = 2, · · · ,n are the nonzero eigenvalues of L.
Proof.With Assumption 1, there exists a matrix Q ∈ Rn×n

transforming the Laplacian matrix L into a Jordan form as

Q−1LQ = J =

[
0 0
0 Ĵ

]
, (8)

where Q = [q1,q2, · · · ,qn] with qi ∈ Rn, q1 = [1,1, · · · ,1]T
is the eigenvector of λ1 = 0, and Ĵ ∈ R(n−1)×(n−1) is in the
Jordan form.

Let z(tk) = Q−1x(tk), and we get

z(tk+1) = Ψ(k)z(tk) (9)

with
Ψ(k) = (I −hk2J)e−hk1J . (10)

It follows from (8) that[
z1(tk+1)
ẑ(tk+1)

]
=

[
1 0
0 (I −hk2Ĵ)e−hk1 Ĵ

][
z1(tk)
ẑ(tk)

]
, (11)

where z(tk) =
[

z1(tk)
ẑ(tk)

]
.

Conditions (7) guarantees that limk→∞ ẑ(tk) = 0, and
limk→∞ z(tk) = diag{1,0, , · · · ,0}z(t0). Hence,

lim
k→∞

x(tk) = Qdiag{1,0, , · · · ,0}z(t0) = [1,1, · · · ,1]T c,

where c = z1(t0), i.e., the agents (4) converge to the consen-
sus asymptotically. Theorem 1 is proved. �

Remark 2. From the proof of Theorem 1, consen-
sus convergence rate of the agents (4) is determined by
supk=1,2,··· ,∞ |(1−hk2λi)e−hk1λi |, i = 2, · · · ,n, and it is evident
that the consensus convergence can be speeded up by choos-
ing proper time intervals of hold control.

Example 1. We consider a multi-agent network composed
of nine first-order agents given by (1), and the fixed inter-
connection topology shown in Fig. 3 has a spanning tree
obviously. For simplicity, all the adjacent weights are chosen
as 0.2, e.g., a14 = a14 = a21 = a32 = a45 = a53 = a58 =
a63 = a74 = a78 = a89 = a96 = 0.2, and the eigenvalues of
L are λ1 = 0,λ2 = 0.4,λ3 = 0.1119+ j0.1373,λ4 = 0.1119−
j0.1373,λ5 = 0.2631+ j0.2101,λ6 = 0.2631− j0.2101,λ7 =
0.45,λ8 = 0.4,λ9 = 0.4.

To compare our persistent-hold control algorithm with the
usual intermittent control algorithm, we consider the period-
ically intermittent communications, i.e., the time intervals

31 2

54 6

7 8 9

Fig. 3. Topology of nine agents.

as tk+1 − tk = 0.6(s) and the communication intervals as
hk1 = 0.2(s). According to the conditions (7) in Theorem 1,
we get the bound of holding control interval as hk2 ≤ 0.4(s).
Under usual intermittent control, the consensus converging
time is 121.93(s) when maxi=2,··· ,n |xi−x1|< 10−2. Then, we
the consensus converging times of our proposed algorithm
with different hold intervals (see Table I). Evidently, our
persistent-hold consensus control have much faster converg-
ing rate than usual intermittent consensus control.

TABLE I
CONVERGING TIME UNDER PERSISTENT-HOLD CONTROL

Holding interval hk2(s) Converging time (s)
0.05 97.82
0.10 81.67
0.15 70.25
0.20 62.52
0.25 54.89
0.30 49.55
0.35 45.20
0.40 41.54

Besides, we consider the more general case, and
choose the time intervals as tk+1 − tk ∈ (0.6,0.7)(s), hk1 ∈
(0.2,0.3)(s) and hk2 ∈ (0.15,0.35)(s). Thus, the conditions
(7) in Theorems 1 hold, and the agents converge to an
asymptotic consensus (see Fig. 4).

IV. SWITCHING TOPOLOGIES

In this section, we study the consensus problem of agents
(1) with switching topologies. In t ∈ [tk, tk+1), we assume
that the topology of agents (1) is described by G(k), which
is fixed, and the corresponding Laplacian matrix is L(k).

With switching topologies, the agents (1) with algorithm
(2) are given by

ẋi(t) =


∑ j∈Ni(k) ai j(k)(x j(t)− xi(t)),

t ∈ (tk, tk +hk1);
∑ j∈Ni(k) ai j(k)(x j(tk +hk1)− xi(tk +hk1)),

t ∈ (tk +hk1, tk +hk1 +hk2);
0, t ∈ (tk +hk1 +hk2, tk+1).

(12)
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Fig. 4. Consensus convergence under fixed topology.

Rewrite (12) in a compact-vector form as

ẋ(t) =


−L(k)x(t), t ∈ (tk, tk +hk1);
−L(k)x(tk +hk1),

t ∈ (tk +hk1, tk +hk1 +hk2);
0, t ∈ (tk +hk1 +hk2, tk+1),

(13)

and we obtain

x(t) =


e−L(k)(t−tk)x(tk),

t ∈ (tk, tk +hk1);
x(tk +hk1)− (t − (tk +hk1))L(k)x(tk +hk1),

t ∈ (tk +hk1, tk +hk1 +hk2);
x(tk +hk1 +hk2), t ∈ (tk +hk1 +hk2, tk+1).

Hence, we obtain

x(tk+1) = Φ(k)x(tk), (14)

where
Φ(k) = (I −hk2L(k))e−L(k)hk1 .

Before presenting the results, we assume that the following
prerequisite about the coupling weights and the hold intervals
of the agents (12) is satisfied:

Prerequisite 1. hk2 ∑ j∈Ni(k) ai j(k)< 1, i = 1, · · · ,n.
Lemma 3. With Prerequisite 1, Φ(k) is a row-stochastic

matrix with positive diagonal entries, and the topology of
Laplacian matrix I −Φ(k) contains all the edges of G(k).

Proof. Let S(k) = I − hk2L(k), and S(k) is obviously a
row-stochastic matrix with positive diagonal entries with
Prerequisite 1. The topology of Laplacian matrix I − S(k)
has the same edges as G(k).

From the Lemma 2.6 in [23], e−hk1L(k) is also a row-
stochastic matrix with positive diagonal entries, so (I −
hk2L(k))e−L(k)hk1 must be a row-stochastic matrix with pos-
itive diagonal entries. Besides,

Φ(k) = S(k)e−
hk1
hk2

(I−S(k))

= e−
hk1
hk2 S(k)e

hk1
hk2

S(k)

Obviously, ∃δ > 0, e−
hk1
hk2 S(k)e

hk1
hk2

S(k) − δS(k) is a non-
negative matrix, i.e., the topology of Laplacian matrix I −
Φ(k) contains all the edges of G(k). Lemma 3 is proved. �

Lemma 4. Under Prerequisite 1, if the union of a set of
topologies G(k1),G(k1 + 1), · · · ,G(k2) of agents (12) has a
spanning tree with the positive integers k1 and k2 satisfying
k2 > k1, then, ∏k2

k1
Φ(k) is SIA.

Proof. Under Prerequisite 1, the topologies associated
with I −Φ(k1), I −Φ(k1 + 1), · · · , I −Φ(k2) are defined as
Ḡ(k1), Ḡ(k1 +1), · · · , Ḡ(k2). Since the union of the digraphs
G(k1),G(k1 + 1), · · · ,G(k2) of agents (12) has a spanning
tree, it follows from Lemma 3 and the assumption in Lemma
4 that the union of the digraphs Ḡ(k1), Ḡ(k1 +1), · · · , Ḡ(k2)
has a spanning tree. Then, Lemma 4 can be proved similar
to the proof of Lemma 7 in [24]. Lemma 4 is proved. �

Theorem 2. Prerequisite 1 holds for the multi-agent
systems (12) with switching topologies. The agents in (12)
converge to an asymptotic consensus, if there exists an in-
finite sequence of uniformly bounded, non-overlapping time
intervals [tki , tki+1), i = 1,2, · · · ,∞,0 < ki+1 − ki ≤ d,d ∈ Z+,
starting at k1 = 0, and the union of the topologies of n agents
across each interval [tki , tki+1) has a spanning tree.

Proof. From (14), we get x(tk+1) =
Φ(k) · · ·Φ(ki+1)∏i

m=1 Ψ(m)x(t0), where Ψ(i) =
Φ(ki+1 − 1)Φ(ki+1 − 2) · · ·Φ(ki). Since the union of n
agents’ interconnection topologies across [tki , tki+1) has a
spanning tree, Ψ(i) is SIA from Lemmas 3 and 4. Because
0< km+1−km ≤ d and the possible topologies of the n agents
(12) are finite, the set of all possible Ψ(i) is finite. According
to Lemma 1, we get ∏∞

m=1 Ψ(m) = 1n f T , where f ∈ Rn is a
constant vector. In addition, Φ(k) is a stochastic matrix with
Prerequisite 1, so we obtain limk→∞ x(k + 1) = 1n f T x(t0).
Hence, limk→∞ xi(tk) = f T x(t0), i = 1, · · · ,n, i.e., the agents
(12) achieve an asymptotic stationary consensus. Theorem
2 is proved. �

Example 2. We take into account a multi-agent network
composed of nine first-order agents given by (1), and The
interconnection topology of the system is switched between
topology 1 and topology 2 every 0.6(s) in Fig. 5, and the
union of topology 1 and topology 2 has a spanning tree.
The adjacent weights are also chosen as 0.2 for the two
topologies, and the time intervals are set as tk+1 − tk =
0.6(s), hk1 ∈ (0.2,0.3)(s) and hk2 ∈ (0.15,0.35)(s). Evidently,
Prerequisite 1 and the conditions in Theorem 2 hold. Hence,
the agents (12) reach the consensus asymptotically (see Fig.
6).

V. CONCLUSION

In this paper, we investigate the first-order multi-agent
systems under intermittent communications, and design a
persistent-hold consensus algorithm to deal with the consen-
sus convergence problem. Our proposed algorithm consists of
the persistent control in communication interval and the hold
control in the part of communication loss interval. Under
the fixed topology, consensus conditions are gained for the
agents converging to the consensus asymptotically by using
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Fig. 5. Switching topologies
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Fig. 6. Consensus convergence under switching topologies.

matrix theory and graph theory, and the consensus conver-
gence rate can be speeded up by choosing proper hold control
intervals. In addition, sufficient consensus conditions are also
obtained for the agents reaching the asymptotic consensus
under switching topologies, of which the union consecutively
across bounded and non-overlapping time intervals has a
spanning tree. In our future research work, furthermore,
we will applied the persistent-hold control strategy into
the consensus problem of multi-agent systems with more
complicated agents’ dynamics.

REFERENCES

[1] R. Olfati-Saber and R. Murray, Consensus problems in networks of
agents with switching topology and time-delays, IEEE Trans. Autom.
Control, vol. 49, pp. 1520-1533, Sep. 2004.

[2] Z. Y. Lin, B. Francis, and M. Maggiore, Necessary and sufficient
graphical conditions for formation control of unicycles, IEEE Trans.
Autom. Control, vol. 50, pp. 121-127, Jan. 2005.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, Coordination of groups of
mobile autonomous agents using nearest nerghbor rules, IEEE Trans.
Autom. Control, vol. 48, pp. 988-1001, Jun. 2003.

[4] W. Ren and R. W. Beard, Consensus seeking in multiagent systems
under dynamically changing interaction topologies, IEEE Trans. Au-
tom. Control, vol. 50, pp. 655-661, May. 2005.

[5] C.-L. Liu and F. Liu, Consensus Problem of Delayed Linear Multi-
agent Systems: Analysis and Design. Singapore: Springer, 2017.

[6] M. Zochowski, Intermittent dynamical control, Physica D, vol. 145,
pp. 181-190, Nov. 2000.

[7] G. Wen, Z. Duan, Z. Li, and G. Chen, Consensus and its L2-gain
performance of multi-agent systems with intermittent information

transmissions, International Journal of Control, vol. 85, pp. 384-396,
Apr. 2012.

[8] G. Wen, Z. Duan , W. Yu, and G. Chen, Consensus of second-order
multi-agent systems with delayed nonlinear dynamics and intermittent
communications, International Journal of Control, vol. 86, pp. 322-
331, Feb. 2013.

[9] N. Huang, Z. Duan, and Y. Zhao, Leader-following consensus of
second-order non-linear multi-agnt systems with directed intermittent
communication, IET Control Theory Appl., vol. 8, pp. 782-795, Oct.
2014.

[10] N. Huang, Z. Duan, and Y. Zhao, Consensus of multi-agent systems via
delayed and intermittent communications, IET Control Theory Appl.,
vol. 9, pp. 62-73, Jan. 2015

[11] Z. Yu, H. Jiang, C. Hu, and X. Fan, Consensus of second-order multi-
agent systems with delayed nonlinear dynamics and aperiodically
intermittent communications, International Journal of Control, vol. 90,
pp. 909-922, May. 2017.

[12] H. Li, Y. Zhu, J. Wang, J. Liu, S. Shen, H. Gao, and Y. Sun, Consensus
of nonlinear second-order multi-agent systems with mixed time-delays
and intermittent communications, Neurocomputing, vol. 251, pp. 115-
126, Aug. 2017.

[13] G. Wen, Z. Duan, W. Ren, and G. Chen, Distributed consensus of
multi-agent systems with general linear node dynamics and intermit-
tent communications, Int. J. Robust. Nonlinear Control, vol. 24, pp.
2438-2457, Nov. 2014.

[14] Z.-W. Liu, X. Yu, Z.-H. Guan, B. Hu, and C. Li, Pulse-modulated
intermittent control in consensus of multiagent systems, IEEE Trans
on. Systems, Man, and Cybernetics: Systems, vol. 47, pp. 783-793,
May. 2017.

[15] C. Li, G. Feng, and X. Liao, Stabilization of nonlinear systems via
periodically intermittent control, IEEE Trans. Circuits and Systems-II:
Exoress Briefs, vol. 54, pp. 1019-1023, Nov. 2007.

[16] W. Xia and J. Cao, Pinning synchronization of delayed dynamical
networks via periodically intermittent control, Chaos: An Interdisci-
plinary Journal of Nonlinear Science, vol. 19, pp. 013120, Jan. 2009.

[17] W. Xiong, R. Patel, J. Cao, and W. X. Zheng, Synchronization of
hierarchical time-varying neural networks based on asynchronous and
intermittent sampled-data control, IEEE Trans. Neural Networks and
Learning Systems, vol. 28, pp. 2837-2843, Nov. 2017.

[18] J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matri-
ces. In Proc. of american mathematical society, vol. 14, pp. 733-736,
Oct. 1963.

[19] H. Zhang and J. Zhou, Synchronization of sampled-data coupled
harmonic oscillators with control inputs missing, Systems & Control
Letters, vol. 61, pp. 1277-1285, Dec. 2012.

[20] T. Ikeda, M. Nagahara and K. Kashima, Consensus by maximum
hands-off distributed control with sampled-data state observation, in
Proc. IEEE 55th Conference on Decision and Control, Las Vegas,
2016, pp. 962-966.

[21] Z. Wu, L. Peng, L. Xie, J. Wen, Stochastic bounded consensus tracking
of leader-follower multi-agent systems with measurement noises based
on sampled-data with small sampling delay, Physica A, vol. 392, pp.
918-928, Feb. 2013.

[22] Z. Wu, L. Peng, L. Xie, J. Wen, Stochastic bounded consensus tracking
of second-order multi-agent systems with measurement noises based
on sampled-data with general sampling delay, International Journal of
Systems Science, vol. 46, pp. 546-561, Feb. 2015.

[23] W. Ren and R. W. Beard, Distributed Consensus in Multi-vehicle
Cooperative Control. New York: Springer-Verlag, 2007.

[24] F. Xiao and L. Wang, State consensus for multi-agent systems with
switching topologies and time-varying delays, International Journal of
Control, vol. 79, pp. 1277-1284, Oct. 2006.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

783


